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LANDSCAPE LOGIC is a research hub under the 
Commonwealth Environmental Research Facilities scheme, 
managed by the Department of Environment, Water Heritage 
and the Arts. It is a partnership between: 
• six regional organisations – the North Central, North East & 

Goulburn–Broken Catchment Management Authorities in Victoria 
and the North, South and Cradle Coast Natural Resource 
Management organisations in Tasmania; 

• five research institutions – University of Tasmania, Australian 
National University, RMIT University, Charles Sturt University and 
CSIRO; and

• state land management agencies in Tasmania and Victoria 
– the Tasmanian Department of Primary Industries & Water, 
Forestry Tasmania and the Victorian Department of Sustainability
& Environment.

The purpose of Landscape Logic is to work in partnership with 
regional natural resource managers to develop decision-making 
approaches that improve the effectiveness of environmental 
management.
Landscape Logic aims to:
1. Develop better ways to organise existing knowledge and 

assumptions about links between land and water management 
and environmental outcomes.

2. Improve our understanding of the links between land management 
and environmental outcomes through historical studies of private 
and public investment into water quality and native vegetation 
condition.
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A beginners guide to Bayesian network modelling 
for integrated catchment management
By Marit E. Kragt

Summary
Catchment managers often face multi-objective decision problems that involve complex biophysical 
and socio-economic processes. In recent years, it has been acknowledged that the interrelationships 
between these biophysical and socioeconomic systems require integrated approaches to catch-
ment management. The Landscape Logic research hub aims to develop tools that aid such integrated 
assessment, using Bayesian Network (BN) modelling approaches.

In this report, the theory behind BNs, and the steps involved in developing a BN model are reviewed. 
A number of example BNs related to catchment water resource management are discussed. 

The examples show that BNs offer a comprehensive way to portray the complex systems associ-
ated with catchment management. The simple graphical representation in BNs can help stakeholders 
to understand the trade-offs involved in multi-objective catchment management. BNs also have the 
advantage that their structure can accommodate a variety of knowledge sources and data types. 
Furthermore, the explicit recognition of uncertainty can help decision-makers to identify the risks 
associated with different management strategies. 

Reviewing existing BNs aids in the identification of current knowledge gaps and some challenges 
involved in BN development that researchers need to be aware of when developing their own BN 
model. Two prominent issues that are apparent from the reviewed literature is the lack of knowledge 
and experience about the ecological and socio-economic systems that are influenced by catchment 
management changes. 

This research is supported by the Environmental Economics Research Hub and Landscape Logic, 
both of which are funded through the Australian Commonwealth Environmental Research Facility pro-
gram managed by the Department of Environment, Water, Heritage and the Arts.
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Introduction

Catchment managers in Australia are faced with 
complex decision problems that involve multiple 
systems and stakeholders, varying from environ-
mental and ecological issues to social and economic 
concerns. To support decision-making, modelling 
tools have been developed that aim to capture sys-
tem complexities by incorporating the hydrological, 
ecological, economic and social processes impacted 
by changed catchment management (Argent, 2004, 
Hajkowicz et al, 2005). However, many of these tools 
are limited to either biophysical models that assess 
environmental changes, or to economic models 
focussing on socio-economic systems. 

Despite the policy interest in integrated catch-
ment management, and the identified need for 
decision support tools, there is still limited experi-
ence in developing catchment models that evaluate 
environmental and economic trade-offs in one frame-
work (Reinhard and Linderhof, 2006). 

Integrated modelling approaches are needed 
that capture the complex interactions between bio-
physical and socio-economic processes to enable 
an assessment of alternative catchment manage-
ment policies. 

The Landscape Logic CERF program aims to 
develop evidence-based tools to enable more 
informed integrated catchment management. The 
objective of the study of which the present report 
forms a part is to demonstrate how different pro-
cesses associated with catchment management 
actions can be integrated into one framework using 
a case study in the George catchment, Tasmania. 
The outcomes of the study will enable decision 
makers to analyse the tradeoffs between the costs 
and benefits associated with changes in catchment 
management and environmental conditions. 

A major challenge for the projects in the 
Landscape Logic program is the combination and 
translation of knowledge from many different aca-
demic disciplines, and from non-academic fields, 
into single, logically consistent frameworks. The 
models that are part of such integrated frameworks 
need to accommodate a suite of catchment pro-
cesses. Some processes (for example, in catchment 
hydrology) may be clearly described by determin-
istic models or can be derived from observational 
data. However, many biophysical and socio-eco-
nomic processes impacted by changes in catchment 
management actions are not well understood and 
are inherently subject to uncertainty. Using a deter-
ministic model that relies on quantitative data will 
not be useful when there is limited information 
about the system. The analyst may need to rely on 
expert judgment to assess uncertain processes. The 
integration framework needs to have the capacity to 
handle uncertainty in the data and accommodate 
different data sources. One useful method for com-
bining deterministic models with observations and 
expert knowledge is the use of Bayesian Networks 
(Pearl, 1988). 

As part of the Bayesian Network (BN) develop-
ment in the George catchment case study, existing 
BNs were reviewed. The present report presents 
relevant results of this review. In the next section, 
the concepts behind BNs will be introduced, while 
section three describes the steps in BN model 
development. Section four discusses some note-
worthy examples of BNs that have been used to 
assess changes in water quality or catchment man-
agement. The last section summarises and outlines 
some implications for developing integrated model-
ling tools for catchment management.
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Bayesian Networks

Figure 1. Example Bayesian Network structure.
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Bayesian Networks (sometimes called belief net-
works or causal probabilistic networks) are 
probabilistic graphical models, widely used for 
knowledge representation and reasoning under 
uncertainty in natural resource management. There 
is a rising interest in BNs as tools for ecological 
and water resource modelling (see, for example, 
McCann et al, 2006, Castelletti and Soncini-Sessa, 
2007, Ticehurst et al, 2007). BNs provide a method 
for representing relationships between variables 
(called ‘nodes’ in the BN) even if the relationships 
involve uncertainty. They can be a useful modelling 
tool in situations where different types of variables 
and knowledge from various sources need to be 
integrated within a single framework (Pearl, 1988, 
and Jensen, 1996).

BNs have been applied to a variety of natu-
ral resource management issues. Applications in 
ecological modelling include, for example, the mod-
elling of responses of Brown Trout to habitat patterns 
(Borsuk et al, 2006); assessment of native fish com-
munities (Pollino et al, 2007) and the response of 
wildlife species to environmental conditions (Marcot 
et al, 2001). Applications to catchment manage-
ment issues are presented in Dorner et al (2007), 
who employed a BN to assess the impacts of agri-
cultural non-point source pollution on a catchment 
scale, and Sadoddin et al (2005) who used a catch-
ment-scale BN to assess the ecological impacts of 
dryland salinity. Water resource management and 
stakeholder involvement in decision making was the 
focus of projects described in Bromley et al (2005) 
and Hendriksen et al (2007). In the context of coasts 
and estuaries, BNs have been applied by Borsuk et 
al (2004) to assess the causes and effects of eutro-
phication of the Neusa River estuary, by Hamilton 
et al (2007) to model the risks of Lyngbya majus-
cula blooms in Deception Bay, Queensland and by 
Ticehurst et al (2007) to assess the sustainability of 
coastal lakes in New South Wales. 

In the following sections, the theory behind BNs 
and their strengths and weaknesses are described. 
Further details about Bayesian Networks and prob-
ability calculus can be found in Pearl (1988) and 
Jensen (1996).

Bayesian Network theory
A Bayesian Network consists of a directed acyclic 
graph of ‘nodes’ and ‘links’ that conceptualise a sys-
tem. The values of the nodes are defined in terms 
of different, mutually exclusive, ‘states’ (McCann 
et al, 2006). The relationships between nodes are 
described by conditional probability distributions 
that capture the dependences between variables. If 
there is a link going from node A to node C, then A 
is said to be a ‘parent node’ of C, and C is said to be 
a ‘child node’ of A. In Figure 1(a), parent nodes A 
and B represent the causal factors of child node C. 
The states of nodes A to C, arbitrarily selected for 
ease of demonstration here, are depicted in Figure 
1(b). Node A can assume the discrete states ‘high’ 
or ‘low’ and node B can assume discrete states ‘true’ 
or ‘false’. The states of variables A and B1 will deter-
mine whether variable C is in state ‘high’, ‘medium’ 
or ‘low’. The conditional relationship between par-
ent nodes A and B and child node C is defined by 
a conditional probability table (CPT). The CPT in 
Figure 1(c) can be interpreted as the probability 
that C will be in its High, Medium and Low states, 
given the states of A and B. 

Figure 2 shows another example of a BN struc-
ture where Erosion is the parent node of Sediment 
and Nutrient concentrations in water. Changed nutri-
ent concentrations will impact upon child node 
Algae growth. Sediment concentrations in the water 
affects Turbidity (an intermediate node), which in 
turn impacts algae growth. 

Different types of nodes can be included in a BN: 
‘nature’ nodes, ‘decision’ nodes and ‘utility’ nodes. 
Nature nodes are variables that can be controlled 
by actions of the decision-maker (for example, 
sediment or nutrient concentrations in river water). 
Nature nodes are used to represent the empirical 
or calculated parameters and the probabilities that 
various states will occur. Input nodes (nodes with-
out parents) can either be structured as constants 
or as categorical states with associated marginal 
probability distributions. A decision node repre-
sents control variables or events that can directly be 
implemented by the decision maker (for example, 
erosion control measures in Figure 2). These nodes 
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Figure 2. Example Bayesian Network structure for erosion, water quality and algae growth.
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typically represent the suite of available manage-
ment actions. Decision nodes should always be 
accompanied by utility nodes. These utility nodes 
represent the value of the decisions or outcomes. 
A utility node can be linked directly to the decision 
node (for example, costs in Figure 2), or to the out-
come node (for example, benefits in Figure 2). The 
utility nodes are used to assess the optimal decision 
rules in the network that will maximise the sum of 
expected values of the utility nodes. 

Bayesian Networks rely on Bayes’ theorem of 
probability theory to propagate information between 
nodes. Bayes’ theorem describes how prior knowl-
edge about hypothesis H is updated by observed 
evidence E. The theorem relates the conditional and 
marginal probabilities of H and E as follows2:

                     (1)
∫ ⋅⋅

⋅
=

dEHEPHP

HEPHP
EHP

)|()(

)|()(
)|(

where P(H) is the prior probability of the hypothesis 
(the likelihood that H will be in a particular state, prior 
to consideration of any evidence); P(E|H) is the con-
ditional probability (the likelihood of the evidence, 
given the hypothesis to be tested); and P(H|E) is 
the posterior probability of the hypothesis (the like-
lihood that H is in a particular state, conditional on 
the evidence provided). The integral in Equation 1 
represents the likelihood that the evidence will be 
observed, given a probability distribution. The pre-
sentation in the form of probabilities gives an explicit 
representation of uncertainty (Bromley et al, 2005).

Advantages and disadvantages of 
Bayesian Networks
There are some obvious advantages of working 
with BNs (Table 1). BNs can facilitate learning about 
causal relationships between variables (Uusitalo, 
2007) and can easily be converted into decision 
support tools to aid natural resource management 
(Marcot et al, 2001). The graphical nature of a BN 
clearly displays the links between different system 
components. This can facilitate discussion of the 
system structure with people from a wide variety of 
backgrounds and can encourage interdisciplinary 
discussion and stakeholder participation (Martín 
de Santa Olalla et al, 2005). The use of Bayesian 

inference means that a BN can be readily updated, 
when new knowledge becomes available (Ticehurst 
et al, 2008).

Natural resource management deals with com-
plex and heterogeneous issues. There is often a 
lack of information about one or more processes 
involved in natural systems. Models that rely on data 
alone (e.g. traditional deterministic or process mod-
els) are not suitable to assess uncertain processes 
in the system. BNs provide a way to overcome data 
limitations by incorporating input data from different 
sources. BNs are therefore useful tools for address-
ing uncertainty in data and combining observations, 
model simulation and expert knowledge (Uusitalo, 
2007).

A convenient feature of BNs is the ability to learn 
about the structure and parameters of a system 
based on observed data. Knowledge of the struc-
ture of a system can reveal the dependence and 
independence of variables and suggest a direction 
of causation. It evaluates the ‘optimal’ BN structure, 
based on the highest probability score for pos-
sible candidate structures, given the data provided 
and perhaps penalised for the level of complex-
ity (Norsys, 2005). Different score metrics can be 
used to evaluate the BN structure, varying from 
entropy methods (Section 3.4) to genetic algo-
rithms. Parameter learning entails estimating the 
CPT at each node, given the link structures and 
the data. Parameter learning is based on Bayesian 
learning algorithms3 that aim to find the maximum 
likelihood for the CPTs in a given BN. Of course, 
‘sufficient’ observations are needed to enable an 
estimation of conditional probabilities and the avail-
ability of ‘enough’ observed data is precisely a 
limitation in many natural resource management 
issues. If there are lots of missing observations, BNs 
can use complex learning algorithms to learn the 
tables. The distribution of the missing data needs to 
be defined and may be dependent on the states of 
other variables or they can be randomly distributed. 
Kontkanen et al (quoted in Uusitalo, 2007) demon-
strate that BNs can yield good prediction accuracy 
using learning algorithms, even if sample sizes are 
small. 
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Table 2. Some software packages available for building Bayesian Networks.

Package
Graphical 

User 
Interface?

Parameter 
learning?

Structural 
learning?

Utility 
nodes 

supported?
Free? Inference 

algorithm

Analytica Yes No No Yes No MC sampling
GeNie Yes Yes Yes Yes Yes Variousa

Hugin Expert Yes Yes Yesb Yes No Junction tree
Netica Yes Yes No Yes No Junction tree

a GeNie supports many different inference algorithms, see http://genie.sis.pitt.edu/wiki/
GeNIe_Documentation.

b  Using conditional independency tests.

Table 1. Strengths and limitations of Bayesian 
Networks.

Strength Limitations
Transparent representation 
of causal relationships 
between system variables

Difficult reaching agreement 
on the BN structure with 
experts

Use a variety of input data Difficult defining the CPTs 
with expert opinion

Representation of 
uncertainty

Continuous data 
representation

Visual decision support tool Spatial and temporal 
dynamics

Can handle missing 
observations

No feedback loops

Structural and parameter 
learning
New evidence can be 
incorporated

There are also some clear limitations to BN 
models. While Bayesian models are a useful way 
to model expert knowledge, it may be difficult to 
get experts to agree on the structure of the model 
and the nodes that are important to be included. 
Furthermore, experts may be challenged to 
express their knowledge in the form of probability 
distributions (Uusitalo, 2007). Elicitation of expert 
knowledge requires an iterative process, to ensure 
that experts are comfortable with the nodes, their 
states and interrelationship in the BN, before they 
can make statements about distributions and confi-
dence intervals of variables (Pollino, 2008).

Furthermore, some BN software packages may 
have limited ability to deal with continuous data. 
Such data generally needs to be ‘discretised’ (bro-
ken up into discrete states). The states need to 
comprise interval values that define the total range 
of values the continuous variable can assume. 
Although discretising is a convenient way to con-
trol the size of the network, discrete states may not 

capture the original distribution of the variable com-
pletely and can lead to lower precision of variable 
values (Nyberg et al, 2006). Barton et al (2008) show 
how discretisation assumptions can significantly 
affect the outcome estimates.

Another limitation that has been defined in the 
literature stems from the acyclic nature of BNs. The 
acyclic property is required to carry out probability 
calculus, but implies that feedback effects cannot be 
included in the network (Barton et al, 2008). There 
is also a limit to the spatial and temporal scales that 
can be modelled within one BN. The usual approach 
to account for different scales is to develop a net-
work for each geographical site or time period, and 
running these separately, inevitably increasing the 
size of the model.

Software
A number of commercial software packages are 
available for developing BN based models. The most 
popular ones are Analytica (Lumina, 2004); Netica 
(Norsys, 2005); Hugin (Hugin Expert A/S, 2004); 
and GeNie (DSL, 2005). Each package has its own 
strengths and disadvantages (Table 2). Information 
about some different software packages available 
for BNs is provided by Murphy (2007). 

The Netica application was used to develop 
many of the Bayesian models in the Landscape 
Logic project (Landscape Logic, 2008). The Netica 
software tool can build, learn, modify, transform and 
store nets, as well as answer queries or find optimal 
solutions (Norsys, 2005). Netica performs standard 
belief updating which solves the network by find-
ing the marginal posterior probability for each node 
(Marcot et al, 2001). One advantage of Netica is the 
comprehensive, flexible and user friendly graphi-
cal user interface included in the package (Uusitalo, 
2007).
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Figure 3 outlines the major steps in constructing a 
BN. Model development is an iterative process that 
may need to be repeated several times before a 
valid and useful BN is established (Farmani et al, 
2009).

Model objectives

As stressed by Jakeman et al (2006), any model 
development process should start with a definition 
of the model’s objective and the scope of the sys-
tem to be considered. First of all, there needs to be 
agreement about the aim of the model, the system 
under consideration and the issues involved. Model 
developers generally need to decide on the selec-
tion of stakeholders that will be consulted in the 
modelling process. These could range from local 
councils, landholders and community organisations 
to State governments and scientists. 

Various stakeholders may consider a multitude 
of issues related to the system, which could lead to 
different modelling objectives for different stakehold-
ers. Where scientists may be interested in increasing 
their understanding of the system, decision makers 
may be more concerned with prediction or forecast-
ing. The issues considered in the model will affect 
the management decisions that will be included in 
the Bayesian network. Engagement with end-users 
is required to ensure that management scenarios to 
be considered are relevant to stakeholders.

The definition of the system under consideration 
may also differ between stakeholders and even 
between the different scientific disciplines involved 
in developing a Bayesian model. Agreement is 
needed about the spatial and temporal scales that 
are relevant to the system. The scope of the system 
needs to be defined in terms of the assets or values 
that will be considered in the modelling. This first 
phase of model development should result in a clear 
picture of the system that is to be modelled, its scale 
and scope, the discrete environmental condition or 
endpoint, which stakeholders will be involved and 
the management scenarios that are relevant to the 
system.

Conceptual model development

When the model’s objectives are defined, a 
conceptual BN can be developed. The initial con-
ceptualisation includes: (1) Identifying the important 
system variables; and (2) Establishing the links 
between variables. 

Identifying the variables (‘nodes’) that are 
important for the system that is being modelled is 
typically based on a literature review, expert opin-
ion and consultation with stakeholders. Included 

Bayesian Network development

Figure 3. Major steps in developing a Bayesian 
Network. (Adapted from Ticehurst et al, 2008.)

1) Define model objectives, system and scales 

2) Conceptual model of the system 

3) Parameterise the model with data 

4) Evaluation of model 

5) Scenario analysis 

nodes should at least be measurable, observable 
or predictable and should have unambiguous defi-
nitions (Borsuk et al, 2004). ‘Oyster populations’, for 
example, could mean oyster size, oyster hatching 
success or oyster quality. Nodes should be defined 
such that all model users understand what variable 
is represented. Once the variables are chosen, the 
links between them need to be identified. It is rec-
ommended that the number of parent nodes is kept 
to three or fewer, to limit the size of the CPT (Marcot 
et al, 2006). 

The identification of nodes and the links between 
them should result in a conceptual influence dia-
gram representing the system under consideration. 
The conceptual model development may involve 
iterative rounds of expert meetings and stakeholder 
consultation and is refined in the model evalua-
tion stage. Conceptual models should capture the 
objective and scales of the model, provide a clear 
(graphical) representation of the system and address 
stakeholder concerns and needs. Conceptual mod-
els can assist with clarifying system understanding 
and identifying priorities and knowledge gaps. 

Parameterising the model
The third step involves assigning states and prob-
abilities to each variable. The states for each node 
represent the potential values or conditions that the 
node can assume. States can be of different types, 
such as one numerical value, an interval, a proba-
bility distribution or a categorical definition (Martín 
de Santa Olalla et al, 2005). The state types and the 
number of states for a node4 is based on the type 
and quality of data available, and on the level of 
model parsimony desired by model developers and 
its users. Both node state types and ‘coarseness’ are 
finetuned at the model evaluation stage. The initial 
starting values for each node can be elicited from 
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literature, using existing data sets or models or by 
discussions with experts or stakeholders. 

Once the state type and number of states have 
been defined, the conditional probabilities for the 
states of each child node are specified for all com-
binations of states of their parent nodes. A prior 
expectation of the probability of a node being in a 
certain state can be elicited from known frequencies, 
or can assume a uniform distribution to represent 
total uncertainty (Nyberg et al, 2006). The estima-
tion of probabilities associated with each state can 
be elicited from experts, obtained from existing 
process models, learned from data or a combi-
nation of these three sources (Pollino et al, 2007). 
Uncertainties associated with each relationship are 
quantified in the probability distribution. 

Model evaluation and testing
After developing the model’s structure and estimat-
ing the conditional probabilities, the BN needs to be 
evaluated. Model evaluation tools include qualita-
tive feedback from experts and stakeholders, or by 
comparing model predictions with literature data or 
with results from similar models. Quantitative model 
evaluation should include sensitivity analyses and 
assessments of predictive accuracy. Predictive accu-
racy refers to a quantitative evaluation of the model, 
by comparing model predictions with observed 
data (Pollino et al, 2007). Sensitivity analysis tests the 
sensitivity of model outcomes to variations in model 
parameters. Sensitivity analysis in BNs can measure 
the sensitivity of outcome probabilities to changes 
in input nodes or other model parameters, such as 
changes in node’s type of states and their coarse-
ness. Sensitivity analysis can be performed using 
two types of measures; entropy and Shannon’s mea-
sure of mutual information (Pearl, 1988). The entropy 
measure is based on the assumption that the uncer-
tainty or randomness of a variable X, characterised 
by probability distribution P(x), can be represented 
by the entropy function H(X):

                    (2)∑
∉

⋅−=
Xx

xPxPXH )(log)()(

Reducing H(X) by collecting information in addition 
to the current knowledge about variable X is inter-
preted as reducing the uncertainty about the true 
state of X (Barton et al, 2008). The entropy measure 
therefore enables an assessment of the additional 
information required to specify a particular alter-
native. Shannon’s measure of mutual information is 
used to assess the effect of collecting information 
about one variable (Y) in reducing the total uncer-
tainty about variable X using:

)()(),( XYHYHXYI −=
          

(3)

where I(Y,X) = the mutual information between vari-
ables. This measure reports the expected degree to 

which the joint probability of X and Y diverges from 
what it would be if X were independent of Y. If I(Y,X) 
= 0, X and Y are mutually independent (Pearl, 1988). 
Another way to use the mutual information measure 
is to compare the impact of gathering information on 
variables Y and Z on reducing the uncertainty in X. 
For example, if I(Y,X) > I(Z,X), then the uncertainty 
in variable X would be reduced more by increased 
observations about Y then by increased information 
about Z (Barton et al, 2008).

Coupé and van der Gaag (2002) and Pollino et 
al (2007) propose an additional empirical approach 
to sensitivity analysis, based on changing each of 
the parameters and observing the related changes 
in the posterior probabilities. This approach can be 
used to identify the most ‘sensitive set’ of variables 
in the BN; those that are most influential in affecting 
change and those that are most affected by varia-
tions in parameters. Note that assessing the influence 
of every single parameter can be a time-consuming 
process, especially in large networks.

Scenario analysis
BNs can be useful decision support tools as they 
allow an assessment of the relative changes in out-
come probabilities, associated with changes in 
management actions or system parameters. By 
specifying the state for one or more input nodes, 
the impacts on other nodes can easily be predicted. 
In Figure 4, this is shown for a hypothetical exam-
ple of oyster production. Catchment management 
actions that aim to improve water quality will impact 
the concentration of nutrients in the estuary, which 
subsequently impacts on oyster quality. The pollu-
tion from a (hypothetical) sewage treatment plant 
also impacts oyster quality and is dependent on the 
proportion of effluent treated. It is shown in Figure 
4(a), that if many water quality control actions are 
taken, but only 60 percent of the sewage volume is 
treated, the likelihood that oyster quality is good is 
60.8 percent. If water quality control measures are 
accompanied by treatment of all sewage, the prob-
ability that oyster quality is good increases to 87.1 
percent (Figure 4b). 

In addition to prediction, BNs can be used for 
diagnostic analyses. By selecting a specific state of 
an output node, the probability that the input nodes 
need to be in a particular state can be observed. In 
Figure 4(c), it is shown that to obtain good oyster 
quality, the most likely states for sewage treatment 
and water quality control measures are ‘yes’ and 
‘many measures’. Figure 4(c) also shows the 
uncertainty associated with the impacts of sewage 
treatment and water quality control on oyster qual-
ity. The likelihood that good oyster quality depends 
on many water quality control measures is 64.6 per-
cent, whereas the impact of sewage treatment is 
more explicit at 87.5 percent.
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Figure 4. Scenario and diagnostic analysis for a hypothetical Bayesian Network for oyster quality.
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Bayesian Networks have been used to model a 
variety of environmental systems. This section 
will describe a selected number of BNs that have 
been developed in the context of catchment water 
resources management. The focus of this review is 
on models that aim to understand catchment pro-
cesses and riverine or estuarine ecology. It is shown 
how BNs can be coupled with other modelling 
approaches and how they can be used to support 
catchment decision making. A review of existing BN 
models can assist the identification of a catchment 
model structure and will provide information about 
nodes and states that are typically included in catch-
ment models. In this review, current knowledge gaps 
and some challenges involved in BN development 
are identified. 

An integrated BN of estuary 
eutrophication
Borsuk et al (2004) developed a BN that integrated 
process-based models, regression analysis and 
expert opinion to predict eutrophication processes 
in the Neuse River estuary, North Carolina. Nodes 
were defined through consultation rounds with local 
stakeholders and decision makers. The attributes of 
concern to stakeholders included water quality, eco-
system conditions and human health (Table 3). Fish 
populations were one of the most important attri-
butes in the Neuse River estuary.

The basic network structure is depicted in Figure 
5. Input variables are indicated with rounded nodes. 
These are river nitrogen concentrations, flow, water 
temperature, cross-channel winds and the duration 
of stratification. Management actions (not explicitly 
represented in the model) were assumed to affect 
nitrogen concentrations in the river. The two output 

nodes in the network were ‘Pfiesteria Density’ and 
‘Fish Kills’.

The nodes in squared boxes depict intermediate 
and output variables whose values were determined 
using sub-models. Clarity, taste, odour, aquatic veg-
etation and faecal coliform were not included in the 
final BN, because they were not affected by nitrogen 
control, the management action under consider-
ation. Algal density was modelled as a function of 
water temperature, river flows and total nitrogen 
concentration using a regression model developed 
using available monitoring data. The Pfiesteria den-
sity sub-model was developed using experimental 
results of the correlation between Pfiesteria and 
phytoplankton biomass. Carbon production was 
assumed to be a function of algal biomass and water 
temperature, whereas sediment oxygen demand 
was expressed as a probabilistic function of annual 
average carbon production and water depth. A 
process-based sum-model of oxygen depletion 
was specified to estimate oxygen concentrations in 
bottom waters. Shellfish abundance was related to 
oxygen status using a survival model for the clam 
species Macoma balthica. The survival of M. balth-
ica further depended on the duration of stratification 
(Figure 5).

Predictions of fish population health and fish kills 
were based on expert opinion. Decline in fish popu-
lation health and increased fish kills were correlated 
to low oxygen levels. Fish kills were further related 
to the occurrence of strong cross channel winds 

Examples of Bayesian Networks in Catchment 
Management

Figure 5. Bayesian network for Neuse estuary 
eutrophication (Source: Borsuk et al, 2004).

River
Flow

Algal
Density

Carbon
Production

Sediment
Oxygen
Demand

Oxygen
Concentration

Shellfish
Survival Days of 

Hypoxia

Fish Kills
Frequency of
Cross-Channel
Winds

Water
Temperature

Pfiesteria
Density

River Nitrogen
Concentration

Duration of
Stratification

Fish Health

Table 3. Ecosystem attributes of the Neuse River 
estuary (Source: Borsuk et al, 2001).

Concern Measurement variables

Water quality

Water clarity
Taste, odour
Dissolved oxygen levels
Chlorophyll a levels
Algal toxins

Biological 
quality

Algal blooms
Fish and shellfish abundance and health
Species diversity
Human-induced fish kills
Submerged aquatic vegetation

Human health
Faecal coliform
Pathogenic micro-organisms 
(e.g. Pfiesteria)
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causing stratification and subsequent reduction in 
available oxygen. A scenario of a 50% reduction in 
riverine nitrogen inputs was run in the software pro-
gram Analytica. The results showed that reductions 
in nitrogen loads may limit the number of fish kills in 
the estuary. The authors note, however, that the pre-
dictive uncertainty in the model is high, mostly due 
to a lack of information on the ecological processes 
in the system. Although fish population health may 
have been the most relevant attribute for stakehold-
ers, the use of fish kills as an output node may have 
compromised the predictive precision achieved by 
the model. The Neuse estuary Bayesian Network is 
being used as a decision making tool, to determine 
total maximum daily nitrogen loads and the impacts 
of changes in daily loads on fish populations. An 
extension to the model could include management 
nodes that link into river nitrogen concentrations and 
flows to enable an assessment of the effectiveness 
of alternative management actions on the model 
outcomes.

Stakeholder participation in BN 
development
The project ‘Management of the Environment and 
Resources using Integrated Techniques’ (MERIT) 
attempted to provide a methodology for integrated 
water resources management. MERIT was a joint 
project by institutions in Denmark, Italy, Spain and 
the UK (www.merit-eu.nl). The project aimed to 
develop a generic integrated management tool 
based on the concept of Bayesian Networks. 

Stakeholder consultation was a major focus in 
each country, however the issues being addressed 
varied from case to case (Bromley et al, 2005). 
The BNs developed in the UK and Italy considered 
competing water demands by a variety of users 
(hydroelectric facilities, tourism, urban households 
and irrigation). The Spanish project involved a BN 
of agricultural groundwater extraction in the Júcar 
catchment in central Spain. This network focused on 
competing water demands for domestic, agricul-
tural and environmental uses, examining the likely 
impact of various management interventions on dif-
ferent stakeholder groups (Bromley et al, 2005). 

The Danish project considered the issues of 
pesticide and nitrate contamination of ground and 
surface waters in the Northeast Zealand catchment 
in Denmark. Water flow and particle transport mod-
els provide inputs to the BN probability tables. The 
Danish study aimed to engage stakeholders in all 
stages of model development (Henriksen ed., 2004). 
Stakeholder groups included local and regional gov-
ernments, farmers and local landholders, scientists, 
industry and environmental organisations. 

The conceptual framework presented in Figure 
6 shows how changing agricultural land use and 

practices may affect groundwater quality. The 
management action being considered was the 
implementation of compensatory payments to land-
holders for changing their land use and pesticide 
application practices. The BN showed how introduc-
tion of pesticide application in agricultural areas 
would affect farming economy, groundwater quality, 
biodiversity and the aquatic environment (Figure 6). 

Results showed that high compensations (up 
to 600 Euro/ha/yr) would be needed to achieve 
a 95 percent probability that water supply would 
be safe. Assessments of the BN focused primar-
ily on the stakeholder consultation processes (see, 
for example, Henriksen et al, 2007, and Henriksen 
and Barlebo, in press). There was disagreement 
between farmers and hydrologists about the extent 
of pesticide leaching to groundwater. To represent 
this disagreement between stakeholders, a variable 
‘perception’ was included that allowed the model 
user to view the results from both viewpoints. 

The results of the Danish groundwater protection 
BN has been evaluated using an optimisation tech-
nique in Farmani et al (2009). The authors show how 
the BN can be coupled with an optimisation tool for 
groundwater management. The technique aims to 
optimise safe water supply, farm income and com-
pensation, allowing for multiple criteria assessment.

The authors conclude that adding the optimisa-
tion tool to the BN allows for participatory integrated 
assessment of the impacts of groundwater protec-
tion measures, and for improved validation of the 
constructed BN. However, it is unclear how safe 
water supply (in per cent) and monetary cost and 
benefits (compensation and farm income) can be 
compared when the objectives are measured in dis-
parate units. 

BNs as a decision support tool for 
coastal lake management
Ticehurst et al (2007 and 2008) developed a decision 
support tool to analyse the impacts of management 
decisions in coastal catchments of New South Wales. 
The Coastal Lake Assessment and Management tool 
(CLAM) made use of Bayesian Decision Networks 
(BDNs) to integrate social, environmental, and 
economic systems associated with coastal lake 
development in several case-study catchments.

The CLAM development process involved inten-
sive stakeholder participation, expert feedback and 
an open documentation of the assumptions and data 
sources underlying the model structure and input 
parameters. Every CLAM case-study had a different 
model structure, dependent on the system, stake-
holder needs and data availability.

Figure 7 shows an example CLAM developed for 
Merimbula Lake (Ticehurst et al, 2008). The shaded 
ovals represent the different management scenarios, 
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Figure 6. Bayesian network for groundwater protection using voluntary farming contracts (Source: Henriksen 
and Barlebo, 2008).

Figure 7. Bayesian Decision Network for the Merimbula lake CLAM (Source: Ticehurst et al, 2008).
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including sea-level rise, wetland management and 
urban development. The framework integrated 
hydrodynamics, water quality and ecological data. 
Social components included population or insti-
tutional structures. Economic costs included in the 
network were the costs of management actions, 
changes in revenue from commercial fishing or oys-
ter production and changes in recreational usage 
of the lake. Probability distributions of param-
eter values were obtained through data analysis, 
assumptions, literature reviews, model simulations 
and expert opinion (Ticehurst et al, 2008).

The CLAM development process followed an 
open, trans-disciplinary modelling approach that 
involved stakeholders in all stages of the model 
development process. The use of Bayesian Decision 
Networks enabled CLAM to take uncertainty in the 
input data into account and provided a decision 
support tool for coastal managers. Modelling results 
showed that the certainty of the state of the output 
nodes was dependent on the information in the 
causal links of the lower order variables. Hence, the 
certainty in the input nodes and the interrelation-
ships between nodes will have a substantial impact 
on the model results (Ticehurst et al, 2008).

The data underpinning the current CLAM models 
is limited and it is recommended to extend the eco-
logical and economic information when better data 
becomes available. Current economic information is 
rather coarse and could be refined using extended 
market analysis and by including an assessment 
of non-market values. Most notably, the impacts of 
alternative management scenarios are represented 
by a variety of output nodes, ranging from qualita-
tive measures of threatened species vulnerability to 
monetary benefits. The model user needs to decide 
which of the CLAM output nodes is most relevant for 
making policy decisions. A direct comparison of the 
various outcomes is difficult if nodes are measured 
in disparate units.

Prioritising market based 
instruments to catchment 
management
Bryan and Garrod (2006) report on a project in the 
Onkaparinga catchment, South Australia. The aim 
of the project was to develop a decision framework 
in prioritising stream protection measures taken 
by private landholders in a public auction bidding 
procedure. Measures such as exclusion of livestock 
from streams and revegetation were analysed in 
terms of costs and their impacts on stream health. 
The BN was used to assess the probabilities that a 
certain level of measures would result in the desired 
protection of the stream.

Figure 8 shows the BN. Nodes that could be 
influenced by management actions include grazing 

pressure, riparian vegetation condition and buffer 
width and length. The cost impacts are expressed 
as the marginal costs of taking measures. The envi-
ronmental impacts are expressed in terms of river 
health attributes: ecological condition and the like-
lihood of degradation. The river health condition 
nodes were assessed using expert opinion, based 
on information on river style, hydrological intactness 
and habitat conditions. The utility node in the model 
measured whether the cost-effectiveness of man-
agement would warrant funding the landholder’s 
activities.

Coupling hydrology models with BNs
The French Agire project aimed to develop a deci-
sion support tool for integrated water resources 
management. A quasi-distributed hydrological 
model was developed for the Hérault River catch-
ment. This model was linked to models of water 
extraction by irrigators and recreational water 
uses (Giraud et al, 2002). The model includes three 
hydrological models specifying water movements, 
and modules of farmers’ behaviour. A component of 
recreational utility was included to represent canoe 
renters who derive satisfaction from specified lev-
els of water flow. Development of the model was 
supported by intensive stakeholder consultation. 
Simulations were aimed at assessing the impacts of 
alternative levels of water use for irrigation versus 
recreational benefits.

The quasi-distributed model did not include 
ecological impacts. Further development of the 
model by Lanini (2006) involved the construction of 
a BN that aimed to assess the ecological quality of 
the catchment (Figure 9). This BN comprised 9 input 
nodes: gravel pit regulation, groundwater level, bank 
degradation, land use, tourism, population, impervi-
ous surface, water discharge and hydraulic works. 
Several of these input nodes can be influenced by 
management activities. 

Each node had a limited number of two or three 
states in order to reduce the number of possibilities 
in the CPT. The CPTs were separated by ecologi-
cal experts, and then calibrated by comparing the 
results from the model with observed ecological 
data (http://agire.brgm.fr).

Three output nodes were considered: landscape 
aesthetics, ecological value and fishermen satis-
faction. These final output nodes were assumed 
to synthesise the environmental criteria. Model 
results showed that the two hydrological input nodes 
‘groundwater level’ and ‘water discharge’ had the 
biggest influence on the output indicators. It was 
recognised by Lanini (2006) that further research is 
needed to populate the CPTs with data and to vali-
date the model to real observations.
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Figure 9. A Bayesian Network for the Hérault River catchment.

Figure 10. 
Native fish BN 
structure for 
the Goulburn 
catchment 
(Source: 
Pollino et al, 
2007).
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Bayesian ecological modelling
Pollino et al (2007) developed a BN to assess the 
impacts of human-related activities on native fish 
communities in the Goulburn catchment, Victoria, 
Australia. The development of a conceptual model 
of native fish communities in the catchment and 
the conditions required to establish sustainable 
populations followed an iterative process of expert 
workshops. The BN represented multiple locations 
and two time periods by including ‘site’ and ‘time 
scale’ as separate nodes in the framework. 

The model consisted of five interacting sub-
models: water quality, hydraulic habitat, structural 
habitat, biological potential and species diversity 
(Figure 10). The model parameters were estimated 
using only available scientific data, a combination 
of data and expert information, and where no data 
were available, expert information alone. Two end-
points were defined: Future Abundance and Future 
Diversity. 

The model was evaluated by comparing results 
with fisheries data from different sites. This assess-
ment showed that the model results were consistent 
with observed data. Further assessments of model 
performance included a structural review with 
experts and sensitivity analyses. The sensitivity 
analyses were performed using the ‘sensitivity to 
findings’ function in Netica and using an empirical 
approach. Results showed that the hydraulic habi-
tat, biological potential and water quality were the 
variables having the greatest influence on future 
fish abundance and diversity. If decision-makers 
are aiming to protect fish populations, management 
actions should therefore be targeted at restoring 
water quality and flows, improving biological poten-
tial and rehabilitating structural habitat in the rivers 
(Pollino et al, 2007).

Integrating a BN with cost–benefit 
analyses
Barton et al (2008) used a BN approach to analyse 
the costs and benefits of nutrient abatement mea-
sures in the Morsa catchment, South Eastern Norway 
(Figure 11). 

The costs of changing four management prac-
tices (tillage land use, buffer strips, sedimentation 
dams and wastewater treatment) were analysed 
using data from a separate cost-effectiveness study. 
This information fed into four separate BNs that 
evaluated the effectiveness for each action in reduc-
ing phosphorus and nitrogen loadings to the river. 
Probability distributions in these networks were 
elicited using a variety of data sources, includ-
ing expert opinion, empirical data and regression 
model results. 

The information about abatement measures 

fed into a larger BN framework that modelled 
the impacts of nutrients on lake euthropication. A 
dynamic, process-based model (MyLake) was used 
to simulate the effects of changes in chemical water 
quality indicators on the suitability of lake water for 
recreational use. 

Running the dynamic model repeatedly with 
Monte Carlo simulations provided the CPTs for 
bathing suitability in terms of temperature, total P, 
chlorophyll a, water clarity and pathogen concentra-
tions (Barton et al, 2008). The benefits of recreation 
were evaluated using results from a 1994 contin-
gent valuation survey of households in the Morsa 
catchment. 

In this study, households’ willingness to pay was 
estimated for the scenario of moving from lake water 
quality that was unsuitable for recreation to water 
quality that was ‘well suited’ for bathing, boating, 
fishing and drinking. Because of the binary nature of 
the valuation study (moving from unsuitable to suit-
able for recreation), the output node ‘suitability’ had 
two states zero and one. 

Results of the management cost-effectiveness 
sub-models indicated that implementing buffer 
strips was the most cost-effective way to reduce 
nutrient loadings to rivers and lakes. While the 
ranking of measures was similar to the original 
deterministic cost-effectiveness study, the uncer-
tainties represented by using the BN approach can 
help to identify which assumptions dominate the 
uncertainty in cost-effect when implementing differ-
ent management actions.

Where the cost-effectiveness of catchment 
management actions to reduce nutrient levels was 
positive, the effectiveness of measures on improving 
lake water quality to suitable recreation conditions 
was generally low. This was due to the combined 
effect of poor current lake conditions and the low 
probabilities of achieving large enough water qual-
ity changes. 

In a deterministic cost-benefit analysis, such 
low probabilities would not have been accounted 
for, resulting in a positive net benefit from manage-
ment actions. The BN accounted for uncertainty, 
which in this case cancelled out the net benefits of 
implementing catchment management actions. The 
propagation of uncertainties through the model and 
the coarse discretisation of the output nodes (suit-
able and unsuitable) were the principle explanation 
for this lack of sensitivity. 

This study showed the benefits of using a BN 
approach in addition to (or over) deterministic 
cost-effectiveness or cost-benefit analyses. BNs can 
help to “identify and visualise which assumptions 
dominate the cost-benefit uncertainty and where 
to gather more information” (Barton et al, 2008:99). 
The authors stressed the information loss due to 
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the discretisation of nodes in the BN. A valuation 
approach that can account for step-wise improve-
ments in lake water quality would be desirable to 
define less coarse states for the ‘suitability’ node5. 

Figure 11. A BN for nutrient abatement in the Morsa catchment* (Source: Barton et al, 2008). [* Pink boxes 
represent management actions; grey ovals represent underlying sub-networks; white ovals represent nature 
nodes with conditional probability distributions.]

Also, further integration and multi-disciplinary 
model development is recommended to reduce the 
uncertainty in the structure and probability distribu-
tions of the Bayesian models.
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Discussion

This review of existing Bayesian Networks showed 
how they can be used as a tool to support the devel-
opment of integrated catchment policies. BNs offer 
a comprehensive way to portray the complex sys-
tem interaction involved in catchment management. 
BNs have advantages over other decision support 
tools in that they are able to represent the catchment 
system as a whole. BNs can be used to aid cost ben-
efit analyses of catchment management actions that 
inevitably have environmental, social and economic 
consequences. The simple graphical representa-
tion in BNs can help stakeholders to easily assess 
the trade-offs involved in multi-objective catchment 
management. 

In the absence of knowledge, conventionally 
physically-based modelling tools may not be appro-
priate when describing catchment processes. BNs 
can be developed even if insufficient data is available 
through the inclusion of various information sources 
and quantitative data. Furthermore, the explicit rec-
ognition of uncertainty can help decision-makers to 
identify the risks associated with different manage-
ment strategies. 

The limitations of BNs should, however, be recog-
nised. They have limited ability to represent spatial 
and temporal dynamics within a system. Some BN 
applications have overcome these limitations, for 
example by using nodes to indicate changes in spe-
cific catchment areas (Pollino et al, 2007), by linking 
BN nodes to GIS data layers (Smith, 2007) or by 
including nodes to represent the duration of events 
(Merritt et al, 2009). Results are sensitive to the type 
of node states, the coarseness in state discretisation 
and the propagation of uncertainties. Also, the use 
of expert knowledge and stakeholder consultation 
requires the model developer to have considerable 
communication and elicitation skills, or to engage 
specialists to assist in the collection of information 
and assemble it in the appropriate form. 

The examples reviewed in this report show 
how BNs can be coupled with other modelling 
approaches and how they can be used for a vari-
ety of management issues in river catchments and 
estuaries. Many of the reviewed studies use physi-
cal observations or process-based sub-models to 
provide inputs into the network. The representation 
of ecological systems is often limited due to a lack 

of knowledge or observable data. Although BNs can 
account for such data limitations, further informa-
tion about the dynamic relationships between water 
quality parameters and ecological parameters in 
rivers, lakes and estuaries, as well as additional col-
lection of baseline ecological data, would improve 
the performance of most reviewed catchment 
models. Some of the studies that are being under-
taken within the Landscape Logic research hub will 
address these information gaps. [See Landscape 
Logic Technical Reports 4 and 5.]

The BNs reviewed in this report typically aim to 
represent catchment systems by addressing a num-
ber of environmental issues, but are limited in their 
description of the social and economic processes 
involved. On the input side, additional information 
could include the impacts of catchment manage-
ment on local communities, landholder uptake of 
catchment management initiatives and improved 
analysis of the management costs of alternative pol-
icy actions (e.g. direct implementation, maintenance 
and extension costs). On the output side, existing 
BNs often fail to incorporate non-market impacts of 
catchment management changes. If BNs are to aid 
cost-benefit analysis of integrated catchment man-
agement actions, such non-market impacts need to 
be included. It is essential that cost-benefit analyses 
are carried out in cooperation with the BN model 
developers, to ensure that the results are attuned 
to the needs of the BN model (and vice versa). 
For example, a valuation study should address the 
same variables as the parameter nodes in the BN. 
Furthermore, the valuation should provide results in 
terms of marginal changes, to enable a finer discre-
tisation of output nodes.

Several Landscape Logic projects aim to develop 
BN models that include input from a variety of pro-
cess-based models and represent a diversity of 
systems. In the George catchment study, for exam-
ple, a BN approach will be used to model hydrologic, 
ecologic and economic processes in the catchment. 
The review of existing BNs in the context of catch-
ment management shows the benefits of using BN 
models but also serves to identify challenges and 
knowledge gaps related to integrated BN model 
development.
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End notes

1. Or, more accurately, the marginal probabilities that parent 
nodes A and B are in a certain state.

2. Note that P(E) needs to be normalised such that P(E) = 1.
3. For example, Netica uses three main types of algorithms to 

learn CPTs: counting, expectation-maximisation (EM) and 
gradient descent (Norys, 2005).

4. The number of states defines the ‘coarseness’ of the node and 
its representation of the parameter distribution.

5. Choice Experiments (also known as Choice Modelling) pro-
vide a valuation technique to assess the marginal values of 
water quality improvements.
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