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Incorporating dynamics and feedback into 
Bayesian modelling of natural resource systems
By John Norton, Integrated Catchment Assessment & Management Centre, 
Fenner School of Environment & Society and Mathematical Sciences Institute, 
Australian National University

Summary

During the establishment phase of Landscape Logic (2006–07) there was much discussion internally, 
as well as between Landscape Logic staff and its partner organisations, on the merits of using Bayesian 
Decision Networks to model landscape processes such as the quality of rivers and estuaries, and 
changes in native vegetation.

In its research into water quality and native vegetation in Tasmania and Victoria, Landscape Logic 
aimed to assemble a wide range of data; from extensive analysis of existing and historical data, origi-
nal biophysical and social research, econominic data, and expert opinion. In discussions, led by the 
Landscape Logic Knowledge Integration team, based at the Integrated Catchment Assessment and 
Management Centre at ANU, we came to the conclusion that Bayesian Decision Networks (BDNs) offered 
the best solution to include this wide range of information into useful predictive models for the purpose 
of assisting natural resource managers to make investment decisions.

This technical report was written by John Norton to express the views of the Landscape Logic 
Knowledge Integration team on the limitations of BDNs and how these could be reduced or eliminated. 
Section 1 of this report identifies the major benefits of  BNs as:

  showing cause-effect relations directly and displaying them graphically
  easily constructed, extended and modified
  incorporating uncertainty in variables and relations yet can be understood without much mathemati-

cal background
  employ a fundamental and relatively simple method of combining imprecise information (Bayes’ 

Rule), and 
  produce outputs (probabilities of values or variables) well suited to decision support.

However, they also have significant limitations. First, time and space are not present as independent 
variables. Variables which depend on past events (dynamics) or on adjacent conditions (distributed 
behaviour) are not represented explicitly.

A second limitation of BNs is that they cannot contain feedback loops. This is essentially because the 
mechanism for using new information, such as a field measurement, to improve knowledge of related 
variables cannot deal with feedback. In natural systems, feedback loops commonly occur where A 
affects B and is also affected by B, perhaps indirectly. This report examines some ways to remove these 
limitations, while keeping as much as possible of the simplicity and flexibility which make BNs so attrac-
tive. Addition of supplementary variables to a BN to introduce time or spatial dependence are compared 
with other approaches which assume such dependence right from the start.

Some alternatives to BNs such as Hidden Markov Models (HMMs) are also considered. 
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1. Introduction 

The Knowledge Integration team in Landscape 
Logic is employing Bayesian Networks (BNs) as the 
main means of modelling ecological systems. BNs, 
explained in Section 2.1, have several appealing 
properties:

  they show cause-effect relations directly and are 
readily displayed graphically

  they are easily constructed, extended and 
modified

  they incorporate uncertainty in variables and 
relations yet can be understood without much 
mathematical background

  they employ a fundamental and relatively sim-
ple method of combining imprecise information 
(Bayes' Rule), and 

  they produce outputs (probabilities of values of 
variables) well suited to decision support.
On the other hand, in their basic form BNs 

have significant limitations. First, time and space 
are not present as independent variables index-
ing the behaviour of the system, so dependence 
of variables on previous history (dynamics) or on 
adjacent conditions (distributed behaviour) is not 
represented explicitly. As discussed later, such 
dependence can be brought in by extending the 
list of variables but at the cost of making the BN 
more complex. The consequence of not model-
ling dynamics is that the model can only mimic the 
behaviour of the system as measured by single 
values of each variable, such as steady-state, aver-
age or extreme values. This is clearly unsatisfactory 
when the evolution of variables over a period is of 
interest, for instance when results of a given climate 
scenario, or of actions to counter a trend, are to be 
predicted.

A second limitation of BNs is that they cannot 
contain loops. This is essentially because the mech-
anism for using new information, such as a field 
measurement, to improve knowledge of related 
variables cannot deal with them. In natural sys-
tems, feedback loops commonly occur, where A 
affects B and is also affected by B, perhaps indirectly. 
Examples are predator-prey relationships in ecol-
ogy and systems in which the consequences of an 
action cause the action to be modified, as in adap-
tive environmental management. Inability to model 
such loops is serious.

The purpose of this report is to examine some 
ways of removing these limitations, while keep-
ing as much as possible of the simplicity and 
flexibility which make BNs so attractive. Addition 
of supplementary variables to a BN to introduce 
time or spatial dependence will be compared with 

other approaches which assume such dependence 
right from the start. Updating of knowledge in feed-
back loops is closely linked to handling dynamics. 
The cause-effect paths making up a loop have finite 
delays, so the implications of new information can 
be followed round the loop provided effects can be 
followed through time.

In examining alternatives to BNs, attention will be 
confined to mature approaches with clearly defined 
scope, well developed methods of establishing 
model structure, estimating model parameters and 
bringing in new information, and a history of suc-
cessful application. State-variable models, fuzzy 
models and Hidden Markov Models (HMMs) will be 
considered. Markov Chain Monte Carlo modelling 
will not, even though it is receiving increasing atten-
tion, as it is less readily understood than the other 
approaches. "Universal" model structures such as 
artificial neural networks, radial basis functions and 
support vector machines are excluded because 
they yield black-box models with no guarantee of 
physical interpretability.

Section 2 concisely describes the modelling 
approaches and discusses their assumptions, scope 
and limitations in the context of Landscape Logic. 
In Section 3 BN modelling and the most promis-
ing of the other approaches are then applied to an 
application example, an algal bloom model where 
dynamics should not be ignored, feedback is pres-
ent and degree of detail is a critical issue. Section 
4 lists the steps in constructing BN models of sys-
tems with dynamics and/or feedback. This section is 
self-contained and could be read independently of 
the rest of the report. The final section draws lessons 
from the application example and makes recom-
mendations for modelling dynamical and feedback 
systems in Landscape Logic. It can be taken as an 
executive summary.

Nomenclature
“Causative” will be used instead of “causal” as 
the adjective referring to a cause, as the latter has 
a strict technical definition (a causal relation is one 
where the start of the response does not precede its 
stimulus: a causal system does not laugh before it 
is tickled). “State” will be used in a strictly defined 
sense in the sections on state-variable model-
ling and HMMs and will be avoided otherwise as 
far as possible. “Controllable” will be used in its 
informal sense, signifying a variable which can be 
altered, rather than applying to a system which can 
be driven through any specified state transition, the 
sense defined in control engineering.



7Incorporating dynamics and feedback into Bayesian modelling of natural resource systems

Notation
There are many clashes between the standard 
notations of the various modelling approaches. 
For consistency, the notation commonest in state-
variable modelling will be used as far as possible. 

Double subscripts, one to identify the variable and 
the other denoting time, are unavoidable; the sec-
ond will always signify time, but will be omitted when 
inessential. Boldface denotes a vector. For single-
subscripted vectors, the subscript signifies time.
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Figure 1. Common dependence relationships in 
Bayesian networks [1].
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2.1 Bayesian Networks

2.1.1 Static BNs
A Bayesian network is a graphical model consisting 
of nodes connected by unidirectional lines (arcs) 
[1,2]. Each node represents a physical variable, 
treated as a random variable which can take any 
one of a number of discrete values. Variables may 
be Boolean (high/low, true/false, present/absent), 
integer or real. A continuous variable is handled by 
dividing its range into sub-ranges, each assigned 
a discrete value. Each arc connects two nodes and 
represents a cause-effect link between their vari-
ables, the arc running from cause to effect. The node 
causing the effect is called a parent node and the 
affected node a child. All nodes affecting the child’s 
parents are ancestor nodes and all nodes affected 
by the child node are descendant nodes. Root nodes 
are those without parents and leaf nodes are nodes 
without children. [Loose and mixed metaphors are a 
feature of BNs]. Any other nodes are called interme-
diate nodes.

Target nodes are the output nodes about which 
the user wants information. Observation nodes 
are nodes where observations provide informa-
tion about other variables. Controllable variables 
are variables whose values can be set, not merely 
observed, and context nodes help describe back-
ground causative conditions [1].

The relation between a child node and all it par-
ents is described by a conditional probability table 
(CPT). For each possible combination of values of 
the parent nodes, any one entry in the CPT gives 
the probability that the child takes a particular one 
of its discrete values, given a particular combination 
of values of its parents' states. These probabilities 
depend only on the parent values (in the absence 
of related observations not yet taken into account). 
For each combination of values of the parent nodes, 
the sum of the probabilities of the possible values 
the child may take must be one. The size of the CPT 
is the product of the numbers of values at the child 
node and all its parent nodes.

When new information becomes available about 
the value of a node, the probabilities in the BN are 
updated by Bayes’ Rule [3], which relates the con-
ditional and marginal probabilities of two events A 
and B:

)Pr(
)Pr()|Pr()|Pr(

B
AABBA =

  (1)

Here Pr(A|B) is the posterior probability of A 
given B, Pr(A) is the prior marginal probability of A, 
Pr(B|A) is the conditional probability of B given A, 

2. Probabilistic modelling approaches

and Pr(B) is the marginal probability of B. Event B 
is that a child node has a specific value and event 
A is that a parent node takes a particular one of its 
permitted discrete values. The prior Pr(A) does not 
employ any information about B. With B given, Pr(B) 
is a constant unaffected by the value of A and merely 
normalises Pr(A|B) so that its sum over all possible 
values of A is 1. This updating mechanism allows 
the probabilities of variables that are not directly 
observed to be updated, via the CPTs, from knowl-
edge of related variables. The computing load of 
updating parents' probability distributions on the 
basis of new information about the child rises with 
the size of the CPT [1]. 

Propagation of information around BNs looks 
at first sight as if it involves updating a large part 
of the network each time an item of information 
arises. However, the scope of an update is limited 
by independence relationships. Nodes A and B are 
conditionally independent if there is no way to get 
from A to B via the directed arcs. Conditional inde-
pendence (also known as d-separation) can also 
arise in causative chains. 

For example, if A causes B which causes C, then 
C and A are conditionally independent, since if it is 
known without uncertainty that B has occurred then 
C is unaffected by any knowledge about A, and vice 
versa. [If an observation of B is subject to obser-
vational error, then knowledge of A contributes to 
knowledge of C, so A and C are no longer indepen-
dent. This fact seems to be ignored by textbooks on 
BNs]. 

Common cause acts similarly; if B causes both 
A and C then A and C are again conditionally inde-
pendent, since knowledge of A or C is unaffected 
by information about the other if B is known exactly. 
Common effects, on the other hand, imply condi-
tional dependence. If A and C both cause B, then if 
an effect on B is known, then knowing for instance 
that Pr(B|C) is low increases the probability that A 
has a value for which Pr(B|A) is high; A and C com-
pete to explain the data B. These relationships are 
summarised in Figure 1.

Constructing a BN consists of choosing the vari-
ables and their possible values, identifying the 
cause-effect relations and thence the graph struc-
ture, and filling in the probabilities in the CPTs. 
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The model is calibrated by supplying the CPTs 
and initial node probability distributions. The effort 
required to do so and to update it when new infor-
mation arrives depends, of course, on the numbers 
of variables, possible values and interconnections. 
Conversely, accuracy and fineness of resolution 
depend on how many nodes and arcs are used to 
model the processes and the number of discrete 
values allowed each variable. In a distributed sys-
tem, coarseness of spatial quantisation will strongly 
influence model complexity. The resolution must 
reflect both the quality of information available and 
the degree of complexity permitted by computing 
load and comprehensibility. Compromise will usu-
ally be necessary between the user’s desires and 
what can realistically be provided may in practice 
be the limiting factor. The complexity may in prac-
tice also be limited by difficulty in understanding 
and assessing the model. These points will be illus-
trated by the example in Section 3.

BNs have been used in a wide range of applica-
tions, including modelling ecological systems [4–9]. 
The model generally treats each cause or effect as 
a single item rather than a spatially distributed vari-
able or time series. The next sub-section considers 
what happens when relations between an effect and 
the history of a cause, not just its value at one time or 
aggregated over one interval, have to be modelled. 

2.1.2 Dynamical Bayesian Networks (DBNs)

DBNs [10] generalise BNs by modelling tempo-
ral relationships between the variables. The model 
is discrete-time as well as discrete-valued. That is, 
the variables are represented only as their values at 
regularly spaced sample instants t = kT, where T is 
the sampling interval (time step) and k any integer. 
To construct a DBN from a BN, one node is included 
for each variable at each sample instant. To keep the 
number of nodes as small as possible, the assump-
tion is made that the probabilities of the next values 
of the variables can be computed from those of their 
current values and the forcing, without knowing the 
previous history. This assumption, discussed further 
in Section 2.2, is restrictive but widely applicable. 
Under it, it is enough to have nodes for variables at 
two successive sample instants k-1 and k, and arcs 
showing how, at sample instant k, each variable 
involved in the dynamics depends on that variable 
and others at time k–1 [10]. The DBN is run by step-
ping forward in time in steps of T.

DBNs can be updated using standard BN infer-
ence algorithms [1].

If also spatial dependence is to be modelled, 
the analogous assumption is that a variable at any 
given location depends only on variables at adja-
cent locations. The model can then be run by 

stepping through both time and space according to 
a specified ordering. Although the spatial relations 
are local, the current probabilities of the variables 
at all the locations have to be stored to allow the 
next probabilities to be computed. The number of 
nodes and arcs will thus be large unless the spatial 
dependence is especially simple. It is, for instance, 
in successive reaches of a stream network, where 
dependence is only in one spatial direction and 
there is only one spatial dimension for a given 
stream.

Because of the severe limitations imposed by 
complexity on modelling spatially distributed sys-
tems by extended BNs, the rest of this report will 
concentrate mainly on how to incorporate dynam-
ics and feedback loops into models. To deal with 
spatially distributed systems where variables at 
many locations must be tracked through time, one 
can envisage modifying computational schemes for 
distributed systems, such as finite-element meth-
ods, by replacing deterministic relations between 
adjacent elements by conditional probability tables. 
Development of a scheme along these lines would 
be a large topic, well beyond the scope of this 
report.

2.2 State-variable models
State-variable models [11,12] are very widely 
employed for systems with dynamics. They exploit 
the assumption, acceptable for many systems, that 
the future behaviour of certain variables of interest, 
the state variables, can be predicted from their pres-
ent values and their future forcing (external inputs), 
with no need to know past values. In other words, 
the influence of the history of the system up to time 
t on future behaviour is fully prescribed by the val-
ues of the state variables at t; those values constitute 
a full set of initial conditions for future evolution of 
the state. This property of the selected variables 
x1,x2,...xn, plus the condition that they contain no 
redundancies, defines them as the elements of the 
state vector x of the system. Usually the model is 
discrete-time, describing the behaviour of all the 
variables sampled at regular intervals T. With the 
state vector by convention written as a column if 
untransposed:

 [ ]Tknkkk xxx ,,2,1 ...≡x
  (2)

is the state x at time kT with k any integer.
The dynamics part of the model consists sim-

ply of scalar difference equations giving the value 
of each state variable at the current sample instant 
kT from the state one sample interval ago and the 
forcing since. The equations are collected into the 
vector state equation of the form:
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),( 11 −−= kkkk uxfx
 (3)

where f is a vector of known functions and u is a 
vector of known forcing variables, with uk-1 covering 
the influence of forcing over the time interval from
(k-1)T to kT.

Some of the state variables may not be directly 
measurable, so a vector y of observed variables is 
defined, related to state by an instantaneous, non-
dynamical observation equation:

 
),( kkkk uxhy =

 (4)

where h is a vector of known functions, which 
depend on u only if there is instantaneous feed-
through from forcing to observed output (a rare 
occurrence).

A discrete-time model of the form (3), (4) can be 
derived from a continuous-time, differential-equa-
tion model, e.g. a set of process rate equations, by 
analytical or numerical integration over T. In many 
cases f and h do not vary with time, simplifying inte-
gration and yielding a constant-parameter model.

Uncertainty is added to (3) and (4) by including 
the influence of unknown time-series vectors w and 
v, called respectively process noise and observation 
noise:

 ⎭
⎬
⎫

=
= −−−

),,(
),,( 111

kkkkk

kkkkk

vuxhy
wuxfx

 (5)

If f and h are linear in all their arguments, this 
model can be analysed comprehensively and 
straightforwardly by linear (matrix) algebra. For 
instance, the responses of state and observed 
variables to any specified forcing and initial con-
ditions can be predicted, either exactly from (3) 
and (4) or, if uncertainty is present, by use of 
(5) with w and v characterised as random vari-
ables. For w the mean  ][ww E≡ and covariance 

]))([()cov( TE wwwwwQ −−≡≡  are speci-
fied, and similarly for v. The model (5) then gives as 
prediction results the means and covariances (indi-
cating scatter) of the state and observed variables. 
In doing this it isn't necessary to assume anything 
about the probability distribution of w or v. Both are 
assumed to be white, though. In other words, suc-
cessive values are uncorrelated with each other (but 
correlation between w and v at the same time does 
not raise difficulties). Consequently any known time 
structure of w or v must be modelled by an auxil-
iary noise model, driven by a white sequence. This 
is often feasible but adds extra state variables to x.

Many state-variable models are of systems 
whose dominant behaviour is well described by a 
modest number of variables. The model structure 

(3), (4) or (5) permits spatial-temporal dependence 
to be described. All spatial variables have to be 
discretised into a number of single-location vari-
ables then included in the state vector. The obvious 
drawback is that this may make the state dimension 
high. However, the number of model parameters to 
be supplied may be quite small if spatial influences 
over one time step are only local and they are simi-
lar over many successive steps. That is, the model 
may be relatively simple if only sparsely intercon-
nected and uniform in behaviour. 

A stream network is a sparsely connected system, 
but variations from reach to reach are likely to pre-
vent the model from stepping through many spatial 
steps with the same parameter values. In addition, 
sometimes spatial lumping, like the time lumping 
in (3) and (4), is difficult or infeasible because the 
state at a given time and place depends on state 
behaviour, over a range of adjacent locations and 
previous times, too detailed to be well specified 
by an acceptable number of samples, and hence a 
sensible number of distinct variables. In that case 
a delay-differential or delay-difference equation 
is required, rather than a differential or difference 
equation, an infinite- rather than finite-dimensional 
state-variable model. This difficulty in describing all 
the significant causative influence applies to model-
ling in general, not just state-variable modelling; the 
problem is just clearer in state-variable modelling.

The ability to analyse state-variable models 
using standard mathematical tools is a great advan-
tage and accounts for much of their popularity. It 
allows, for instance, the design of an effective and 
fairly simple algorithm (the Kalman filter) to estimate 
state from uncertainty-affected measurements in the 
presence of uncertain forcing. Efficient parameter 
estimators have also been developed to calibrate 
useful special cases of linear state-variable models.

Advantages of state-variable models may be 
summarised as:

  their origin as differential equations, conferring 
great flexibility in describing dynamics

  clear separation of the observation process and 
the dynamics

  clear separation of the known and uncertain 
items

  simple probabilistic specification of the uncer-
tainties, not requiring distributional assumptions 
(although many authors make such assumptions 
for convenience or through ignorance)

  for linear systems with additive forcing and 
observation errors, easy analysis of their proper-
ties, conferring full understanding (e.g. through 
normal-mode analysis)

  mature tools for calibration and state estimation.
In practice, and in the great majority of 
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environmental models, f and h aren't entirely lin-
ear and we may well be interested in more than the 
means and covariances of the uncertain variables. 
Non-linearity makes analysis much harder and often 
impracticable. Moreover, if the distributions of w 
and v are anything but Gaussian (and perhaps even 
then), analytical prediction of the probability distri-
butions of the state or observed variables is unlikely 
to be possible. However, in recent years develop-
ment of a Monte Carlo approach, regrettably called 
particle filtering [13,14], has made it possible to 
investigate non-linear systems and systems with 
non-Gaussian forcing or observation noise. The 
idea is just to follow a large number of samples of 
state and forcing numerically through the state and 
observation equations, then examine the resulting 
sample distributions of the state, observations and 
anything else that depends on them. New obser-
vations can be exploited by calculating, for each 
sample of state, the likelihood of the error between 
the predicted and observed values. The probabili-
ties of individual predicted state samples are then 
updated as the product of the prior probability and 
the likelihood, yielding the state's posterior prob-
ability density function in sample form. In this way 
state estimation becomes feasible, whatever the 
properties of f, h, w and v, so long as a large enough 
set of state samples can be processed.

There are snags, though. The most obvious is 
the computing load of running the model for a large 
number of sample state values. Less obviously, it 
is necessary to resample from the empirical dis-
tribution after each time step to avoid the samples 
diverging excessively. Conversely, the resampling 
scheme must be designed so that the resampled 
distribution does not collapse into a few values or 
even a single value. Particle filtering is best suited 
to models with few state variables and good knowl-
edge of the relations between them, but analytically 
inconvenient relationships and "noise" properties. 
In particular, it has become popular for aerospace 
target tracking. Here the state variables are position, 
velocity and possibly acceleration components, i.e. 
only 6 or possibly 9 state variables per target, non-
linearity arises from incompatibility of rectilinear 
motion coordinates and polar observations (range 
and direction), and noise distributions are mixtures, 
not amenable to analysis, due to several phenomena 
(clutter, glint, refraction, manoeuvres, turbulence). 
For models intended to aid environmental manage-
ment, particle filtering will usually be excluded by 
lack of knowledge of the form of relations between 
variables and of the probability distributions of 
unobserved forcing, measurement and modelling 
errors. In rare cases where such knowledge is avail-
able, computational load is likely to be a problem. 

Other features of state-variable models which 
may be seen as disadvantages (or as advantages, 
depending on the intended users) are:

  the abstract idea of state, allowing consider-
able freedom in the choice of state variables, 
including some which may not look intuitively 
all right. For instance, a second-order difference 
equation in a single response variable z, say, 
can be rewritten as two scalar state equations 
in the form required by (3), by selecting zk and 
zk-1 as state variables, say x1 and x2, at time kT, 
say (making one of the scalar state equations 
x2,k =  x1,k–1), an odd idea at first sight. Furthermore, 
any non-degenerate linear transformation of a 
valid set of state variables is also valid

  linear algebra, the natural language of linear, 
time-invariant (constant-parameter) state-vari-
able models, nice if you speak the language, 
nasty if not

  putting the model into the standard form (5) 
may involve some work on the original, physi-
cally motivated equations (as in second-order 
example above), risking a loss in interpretabil-
ity. The original graphical representation may be 
changed into a structurally simpler but less eas-
ily interpreted one

  uncertainty is prescribed by means and covari-
ances alone. Covariances are not part of the 
intuitive equipment of most people (although 
not complicated), and they do not translate 
into probabilities or probability densities with-
out some extra assumption about the form of 
the distribution. This is particularly a drawback 
when a distribution is heavily skewed or when 
the chance of some value being exceeded is of 
interest

  state variables are continuous-valued, i.e. real 
variables, not quantised. This is inappropriate 
when a variable is inherently integer-valued (e.g. 
binary) or when it is so vaguely known that only 
a few possible values (say low, medium, high) 
are justified

  the general form of each relation is assumed to 
be known. This can be the greatest strength of 
state-variable modelling, as it means that such 
prior knowledge is incorporated, or its greatest 
weakness, if the form is unknown.

2.3 Fuzzy modelling
The underlying idea of fuzzy modelling, fuzzy mem-
bership, is simple and has a long history [15]. A 
variable is classified as being in one or more sets, 
defined verbally and numerically, to a numerical 
extent between 0 (not a member) and 1 (completely 
a member). For example, high river flow rate might 
be defined as 100 units or more, with degree of 
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Figure 2. Successive steps of a Hidden Markov Model (boxed). TPM = transition probability matrix; 
OPM = observation probability matrix

highness rising linearly from 0 at 50 to 1 at 100; 
medium flow as rising from degree 0 at 20 to 1 at 60 
then back to 0 at 100; and degree of lowness of flow 
as being 1 up to 30 flow units, declining linearly to 0 
at 50 units. A flow rate of 80 units then has member-
ship 0.6 of high flow, 0.5 of medium and 0 of low.

This scheme conforms with subjectively viewing 
an item as having a number of attributes to varying 
extents (in this example, flow sort of medium but 
rather high, definitely not low). Vagueness is intrinsic 
to the scheme, although certainty can be expressed 
by membership 0 or 1. Once variables are classi-
fied by their memberships of fuzzy sets, the model 
comprises verbal rules which relate them (e.g. if A is 
high and B is medium or low, then C is low). A num-
ber of such rules yield results expressed as fuzzy 
memberships. A composition rule is needed to 
resolve them into a unique value ("defuzzification"). 
The rule is often all-or-nothing, e.g. highest wins.

It is not difficult to see that the entire process of 
fuzzification, application of rules and defuzzifica-
tion amounts to a scheme for prescribing, piece 
by piece, numerical relations between variables. 
The relations are piecewise linear if the member-
ships vary piecewise linearly with their arguments, 
as in the little example above. In applications with 
a good deal of imprecise process knowledge, 
often expressed as verbal rules of thumb, con-
trol schemes based on fuzzy modelling have been 
effective where more formal design techniques 
(for instance optimising the expected value of a 
cost function) would be cumbersome or impracti-
cable. Opinions of fuzzy modelling tend to polarise 
according to the degree to which the modeller is 
prepared to accept a largely informal process by 

which different practitioners would generally get 
different results, which is tested mainly by trial and 
error, and which is analysed with difficulty or not at 
all.

In spite of its popularity and effectiveness in 
some areas, fuzzy modelling is subject to substantial 
objections:

  it typically asks the modeller to supply a large 
number of numbers on subjective grounds

  the functional form of the relation between the 
value of a variable (such as flow) and its degree 
of membership of a fuzzy set (such as high flow) 
is largely arbitrary

  the continuous variation of degree of member-
ship with argument may hide radical uncertainty 
and give a spurious impression of precision

  all-or-nothing defuzzification throws away infor-
mation. Put another way, the result is insensitive 
to what emerges from part of the model, up to 
some threshold

  it isn't clear what uncertainties eventually domi-
nate the results.

2.4 Hidden Markov models
HMMs [16–19] use tables of probabilities to 
describe relations between variables which can 
take only a finite number of possible values, in the 
same way as BNs. An HMM may indeed be viewed 
as a specialised sort of BN. However, HMMs employ 
the idea of state, linked to the Markov property 
which allows the next state to be found from current 
state and forcing alone, as in state-variable model-
ling. In each time step a new state is entered, which 
depends only on the state at the start of the step 
and the forcing during the step. However, there are 
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differences: 
  the state variables in a state-variable model are 

generally continuous-valued (even if discrete-
time), whereas an HMM has a finite number of 
discrete state values

  a state-variable model retains the separate iden-
tities of the variables making up the state vector, 
but an HMM treats the state as a whole and com-
putes the probabilities of each possible value of 
state

  an HMM is intrinsically probabilistic: each 
time step obeys a collection of probabilities 
of transitions between particular state values. 
State-variable models, on the other hand, mostly 
originate in deterministic differential-equation 
models, with uncertainty added if necessary 
through auxiliary "noise" variables.
In an HMM, the collection of probabilities of 

every possible state transition in one time step is 
written down as a matrix, with element (i,j ) the prob-
ability that state value i goes to value j. As the new 
state value may coincide with the old one, element 
(i,i ) is generally not zero. The state is not directly 
observed (it is hidden) but each state transition pro-
duces an observed output symbol, a value from a 
finite set of possible values. The probability distribu-
tion of this output is conditioned only on the current 
state, and the entire set of conditional probabilities 
may again be written as a matrix. As suggested by 
the use of matrices, a single index can be used to 
run through all possible values of the state at any 
one time. However, in environmental models it will 
often be helpful to think of the state as segmented 
into distinct variables, as in state-variable modelling. 
Similar comments go for the observations.

HMMs embody dynamical (state-transition) and 
non-dynamical (observation) processes, clearly 
separated just as in state-variable models. Like them 
they have time as an independent variable, yet they 
use conditional probabilities as BNs do. It therefore 
looks as if HMMs may provide the shape and power 
lacking in non-dynamical BNs, while retaining their 
way of handling uncertainty. Whether this is so will 
be tested by the application example in Section 
3. Meanwhile, let us look at HMMs in a little more 
detail.

Figure 2 shows how the variables evolve in an 
HMM.

An HMM is specified by the:
  number N of state values
  number M of observation symbols
  set Q = {q1, q2, …,qN} of possible state values
  set V = {v1, v2, …,vM}of possible observation 

symbols
  state transition probability matrix A with 

[A]ij ≡ aij = Pr(xt+1 = qj |xt = qi)

  observation symbol probability matrix B with 
[B]ij ≡ bij = Pr(yt = qj |xt = qi)

  initial state probability distribution I = {πi} where 
πi = Pr(x0 = qi).
In addition to the Markov assumption, two other 

assumptions are made:
  the stationarity assumption: that state transi-

tion probabilities are independent of the time 
at which the transitions take place, i.e. that: A is 
independent of t

  the output independence assumption: that the 
current output is statistically independent of all 
earlier outputs.
While the Markov and stationarity assumptions 

apply in a wide range of situations, the output inde-
pendence assumption is far more restrictive and 
can be a weakness in HMMs.

Use of an HMM poses three tasks:
1. Computing the probability of a particular output 

sequence given the parameters of the model
2. State estimation: finding the most probable 

sequence of hidden states that could generate a 
particular output sequence, given the parameters 
of the model

3. Identification: finding the model parameter val-
ues maximising the probability of a given output 
sequence or set of sequences.[12, 13]
Rabiner and Juang [12] describe solutions to 

all three. The first can be solved analytically by the 
forward–backward algorithm. The second can be 
addressed computationally in a number of ways, 
one the Viterbi algorithm [12,]. The identifica-
tion problem is the most difficult of the three, often 
attacked by an iterative method, the Baum-Welch 
method [12]. The computational complexity of 
both the forward-backward and Viterbi algorithms, 
for a model with N possible states and an output 
sequence of length P, is O(N2P) [12]. The complex-
ity of the Baum-Welch algorithm for W observation 
sequences of length P is O(WN 2P), if in both cases 
a transition can occur between any two states, i.e. 
if the state transition matrix is full. In practice, many 
entries in the matrix will be zero, reducing the num-
ber of calculations to update the model. This factor 
will be important in the example later.

HMMs are widely used in signal-processing 
applications such as modelling digital communi-
cation channels, speech modelling, isolated word 
recognition and cryptology. Their main potential 
advantages in comparison to BNs for modelling 
managed environmental systems are:

  a basis in temporal relationships
  consequent ability to accommodate feedback 

loops
  clear distinction between dynamical and obser-

vation processes
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  a very simple and uniform conceptual structure.
This last property is also their main potential 

disadvantage compared to BNs. The CPTs in a BN 
describe local relations, whereas in an HMM suc-
cessive values of all the variables making up the 
state are related by the state transition probability 
matrix (TPM). It thus has the same number of rows 
and columns as the number, usually large, of possi-
ble discrete state values. However, many entries will 
be zero, because the corresponding state transitions 
cannot occur. Moreover, the state, as in state-vari-
able models, need only involve those variables with 
dynamics. Variables whose cause-effect relations 
can be regarded as instantaneous follow from the 
state variables by parent-child links just like those in 
a static BN. A crucial question is how much exclud-
ing instantaneous relations from the TPM reduces 

the complexity of the model. Ultimately the test of an 
HMM is whether it can model the system, including 
the important dynamics and feedback, with as little 
complexity as possible. Because there is no redun-
dancy among the state variables and the Markov 
assumption has been invoked to minimise the 
number of past values needed, the answer should 
generally be yes, provided all inessential state-to-
state links are left out.

The application example below illustrates the 
process of developing a probabilistic model and 
brings out some factors affecting choices in that pro-
cess. The model's main purpose is to predict the 
behaviour of a particular variable. Explanation of 
the behaviour of the rest of the system, while of inter-
est, is secondary. As a result, simplifications of the 
model which merge variables may be permissible.
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Figure 3. The structure of the BN 
model. Dot-dash lines are links with 
dynamics; dashed lines are feedbacks. 
Number of discrete state values is in 
brackets for each variable.

3.1 Selection of modelling approaches 
for trial example
For Landscape Logic, the modelling approach must 
be suited to probabilistic information which ranges 
greatly in degree of detail. It should also make 
good use of knowledge of the processes involved, 
without assuming that the specific forms of equa-
tions are known for all relations. This may exclude 
state-variable modelling, which does need such 
knowledge, as differential or difference equations 
with known structures, although some uncertainties 
can be lumped into the process noise and observa-
tion noise. However, state-variable modelling treats 
uncertainty in quite a restricted way, through means 
and covariances (or analogously through bounds 
[21]). Probability density functions are then obtain-
able only if uniquely determined by means and 
covariances (as are Gaussian or uniform densities, 
for instance). 

Fuzzy modelling is superficially attractive when 
data are very limited or of doubtful quality, espe-
cially when some of the knowledge exists as verbal 
rules. However, fuzzy modelling is merely heuristic 
in how it quantifies and combines information, and 
it has little safeguard against errors in subjective 
judgement. Together with the drawbacks listed at 
the end of Section 2.3, this is sufficient to rule fuzzy 
modelling out for Landscape Logic.

Bayesian Networks and Hidden Markov Models 
remain. The next subsections compare a BN and 
an HMM which relate cyanobacterial (blue-green 
algae) blooming to causative factors such as nutri-
ent and light availability and actions taken as a 
result of monitored water quality. The focus will be 

3. Application example

on how complex the models and their updating are 
and what sorts of information they can yield. Their 
strengths and weaknesses will be compared and 
conclusions drawn about their usefulness for mod-
elling the types of situations expected in Landscape 
Logic. The example is not very complicated but is 
enough to bring out general points about the practi-
cal use of BNs and HMMs.

3.2 Cyanobacterial bloom modelling
Cyanobacterial blooms are a serious water-quality 
hazard because of the cyanotoxins they produce. 
Prediction of the likelihood of a bloom is desir-
able as an aid to management action. Management 
actions to avoid cyanobacterial blooms include 
reducing phosphorus level, by controlling runoff of 
fertiliser and waste, and aerating the water, effective 
since cyanobacteria bloom in warm, calm condi-
tions and do not do well in agitated water [22].

The purpose of the model is to predict the 
occurrence of cyanobacterial blooms, rather than 
explain how and why blooms occur. Having a pre-
dictive rather than explanatory purpose allows the 
model structure to be simpler. Even so, predicting 
if and when a bloom will occur is made difficult by 
incomplete understanding of the many factors which 
influence cyanobacterial growth, including:

  light, critical since cyanobacteria are photoau-
totrophic [23]. Light intensity depends on day 
length, water turbidity and flow

  phosphorus, a crucial nutrient of cyanobacteria 
[24]

  temperature, which affects the rate of processes 
such as photosynthesis [23]; the growth rate of 
most cyanobacteria is highest above 25°C [25]
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  retention time of water in the water body where 
the cyanobacteria grow. A long retention time is 
required for bloom formation, since growth rate 
tends to be low [25].
Two questions thus arise in comparing BNs and 

HMMs in this example: can the model tolerate con-
siderable ignorance, and how much can it predict 
about a bloom? 

3.3 BN model for cyanobacterial 
blooms
The BN model is based on that developed by Pollino 
and Webb [24] and Webb et al. [26] to model cya-
nobacterial populations in Bourke Weir, NSW, a 
four-kilometre, narrow, shallow impoundment on the 
Darling River with high phosphorus concentration 
and turbidity. The structure of the model is shown in 
Figure 3, with the numbers of possible values of the 
variables as in [24].

In its basic form [24] the BN model treats the 
dynamical links as static, relating variables mea-
sured at single, fixed times or averaged over given 
intervals (not necessarily the same for all). It also 
ignores the feedbacks. Figure 3 shows several addi-
tions and alterations to the model described in [24]. 
The "management action" node covers action in 
response to water-quality measurements, to reduce 
nutrient by controlling runoff from sources such as 
fertilised fields. Flow out of the impoundment might 
also be controlled but is not considered, to avoid 
too much complication. Making management action 
responsive to measurement imposes feedback, 
closing a unidirectional loop. Another feedback loop 
results if the influence of algal population growth 
on the amount of phosphorus remaining to nour-
ish further growth is included. The effect of flow on 
turbidity has also been shown in Figure 3, turning 
turbidity from a root node into a child node. It does 
not establish a feedback loop, as turbidity has no 
influence on flow.

The numbers of possible values of the vari-
ables indicated in Figure 3 are about the smallest 
which make sense; a case could easily be made for 
increasing them. They give the following sizes of the 
conditional probability tables in the static version, 
ignoring for the moment dynamics, feedback and 
the flow-turbidity link:

  retention time, light, available P and temperature 
to population: 4 x 2 x 3 x 2 x 4 = 192

  flow to retention time: 2 x 4 = 8
  flow, turbidity and day length to light:  3 x 4 x 3 x 

2 = 72
  turbidity, total P and management action to avail-

able P: 2 x 3 x 2 x 3 = 36.
Total number of CPT entries = 308.

Many of the CPT entries will be small, as the 

corresponding combinations of values of variables 
are improbable. However, blooms happen when 
conditions are unusual, so some care is needed if 
a parent probability entry is to be rounded to zero, 
removing all child probabilities conditioned on that 
value. 

The number of CPT entries might also be reduc-
ible by exploiting knowledge of how the effects of 
more than one cause combine. For instance, the 
combined influence of light and available P on 
growth might be indicated via a node "P and light", 
with state quantised to, say, 3 values, as in [24]. The 
result would be to reduce the size of the CPT yield-
ing population probabilities from 192 to 4 x 2 x 3 x 
4 = 96 and add a CPT table of size 3 x 3 x 2 = 18 
for the relation between the combined variable and 
light and available P. This reduces the total number 
of CPT entries by 78, about 25%. It illustrated how 
numerical data demands may be reduced, paradox-
ically, by introducing an extra node to reduce "fan 
in", i.e. the number of immediate causes of an effect. 
There is a price to be paid in explanatory power, as 
the model now only describes the combined effects 
of causes whose effects were formerly separated. 

The message is unsurprising: explanatory detail 
must be traded against data demands. However, this 
example is also a reminder that in a BN the total size 
of the CPTs (and thus their data demands and the 
effort of updating variables' probabilities through 
them) rises not simply with total numbers of nodes 
and arcs, but rather with the number of parents of 
each child node. This may be important in decid-
ing how to model dynamics, where similar overall 
behaviour can be reproduced by sub-models with 
differing structures, as shown later.

If the BN is to model the dynamics shown as dot-
dash lines in Figure 3, neglecting the feedbacks for 
the moment, some time-labelled extra nodes will 
have to be added to enable the BN to be stepped 
through time, updating the probabilities of vari-
ables as measurements arrive. Time-stepping is 
also necessary if the time-spread consequences 
of specified input behaviour are to be predicted. 
The dynamical links in Figure 3 will be considered 
in turn, with the aim of seeing what state variables 
are necessary and which variables act as external 
forcing. The relations between them will initially be 
written as schematic state equations simply to show 
what relates to what. The corresponding implemen-
tation in a DBN is by a CPT giving probabilities for 
the time-labelled variable on the left-hand side for 
every combination of values of the time-labelled 
variables on the right-hand side. The other, non-
dynamical relations are treated by CPTs just as in an 
ordinary BN.

The light, available P and temperature variables 
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influence population through growth rate, so those 
links are describable by a schematic, scalar, dis-
crete-time state equation:

population xp,k at sample time k = xp,k-1 + fn(light, 
available P, temperature, all over interval from (k-1)T 
to kT, and retention time)  (6)

Notice that the presence of xp on both sides of (6) 
implies feedback from population to itself; this raises 
no difficulty in updating, where the time delay of T 
between the two population values separates them 
into two distinct entities. The same applies to every 
state variable. It is not obvious whether retention 
time affects population through some dynamics or 
instantaneously; population at exit is the result of the 
integrated growth rate over the retention time and 
might thus be related to retention time at the same 
instant (non-dynamically). For simplicity the relation 
will be taken as instantaneous. However, retention 
time is a state variable, say xr,k at sample instant k, 
since it is related to the external input flow by some 
dynamics, discussed later, which will determine 
how it is to be included in (6). Of the other parent 
variables of population, temperature is an external 
input, so its role in (6) is as forcing, say ue,k-1, with 
probabilities or actual value supplied as data. Parent 
variables light and available P will be assumed to 
have instantaneous effects on the growth rate, so 
(6) need only contain their values zl,k–1, za,k–1 for the 
interval (k-1)T to kT. They are both influenced by 
turbidity. In this example they will be assumed to 
be affected instantaneously by turbidity (with the 
management action loop not considered as yet), 
although a more detailed model might attempt to 
account for the mixing properties and composition 
of sediment by adding dynamics between turbidity 
and available P.

The physics underlying the dynamical relation 
between flow and turbidity (omitted in [24]) leads 
one to expect that turbidity depends strongly on flow 
at the same time but also on the recent flow history. 
In other words, the forcing variable flow, denoted 
by uf,k-1 for the interval between sample instants k-1 
and k, affects turbidity through some dynamics, so 
turbidity is a state variable, say xt,k at time kT. Rainfall 
and river flow rate (and hence upstream stage) over 
some period have large effects, some cumulative, 
on sediment generation and transport. Rainfall mea-
surements are not included in the model, and flow 
is mediated mostly by the management of a bar-
rage. Turbidity is affected by things such as whether 
the flow is rising or receding and how rapidly it 
has been changing. In a discrete-time model these 
factors are conveyed by the flow values at recent 
sampling instants, say m daily values including the 
latest. We thus seem to need m root nodes for flow. 
However, if m is not small and the dependence of 

turbidity on those m values varies in a fairly simple 
way with time lag, it will normally be more eco-
nomical to write current turbidity in terms of a small 
number of recent turbidity values and fewer than m 
flow values. That is, an autoregressive-moving aver-
age (ARMA) sub-model structure will require fewer 
terms than a purely moving average one. Typically, 
second-order ARMA models have enough flexibil-
ity to approximate fairly complicated dynamics well 
enough, so two successive turbidity values, at sam-
ple instants k–1 and k, would be selected as state 
variables xt1,k, xt2,k at sample instant k, yielding two 
scalar state equations of the form:

⎪⎭
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with the forcing being one (as in (7)) or perhaps two 
successive flow values.

Generalising this, an mth-order, one-input, one-
output, ARMA-structure model of dynamics requires 
at most m successive values of the scalar dependent 
variable as nodes, m-1 arcs to interconnect them (as 
in the first equation of (7)) and a maximum of 2m–1 
arcs connecting the first m–1 of them and the forcing 
to the last of them (as in the second equation of (7)).

The dynamics giving retention time from flow are 
less easy to sort out. Before it is discretised, reten-
tion time is the time over which time integral of flow 
= storage volume. On the assumption that retention 
times xr,k–1,xr,k at sample instants k-1 and k are both 
between (p–1)T and pT, it turns out that:

 ),,,,( 1,,1,1,, puuuxfnx pkfpkfkfkrkr −−−−−=
 (8)

where uf,k–i is flow in the interval between (k-i)T and 
(k-i+1)T. If xr,k–1,xr,k differ, the function on the right-
hand side of (8) is modified slightly. In all, the state 
equation for xr is a set of equations, (8) and its coun-
terparts for all possible changes in retention time 
between times k-1 and k. It is tempting to avoid this 
complication by taking out the retention time node 
and taking its effect to be that of a fixed number of 
successive flow values.

Next the two feedback loops in Figure 3 have to 
be modelled. A mass balance for available P over 
the interval (k-1)T to kT gives the change as due 
to net inflow and change in P incorporated in the 
population. This yields a first-order difference equa-
tion in state variable xa (called za when we hadn't 
yet considered its status as a state variable). The 
equation is forced by an external variable, total P, 
denoted by up, say, by population xp, and by man-
agement action. The response to management 
action may have dynamics, not considered here, 
reflecting the time-spread effects of the action on P 
inflow. The dynamics from population to available 
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Figure 4
State-transition part of HMM for cyanobacterial 

blooms.

Left column: 
State at time k–1; 

Middle column: state at time k;
Right column: forcing for interval k.

P are handled by including xp,k–1 on the right-hand 
side of the state equation for xa,k. There is no need 
for an extra node, as xp,k–1 is already a node as a 
result of appearing in the state equation (6) for xp,k. 
Modelling the management action as affected by 
population assumes that the action has a consistent 
policy, expressible through probabilities in a CPT or 
even as a deterministic relation. The alternative is to 
treat the action as external forcing, independent of 
the other variables, "open-loop control" as in [23]. 
That loses the opportunity to investigate the efficacy 
of basing management action on monitoring its 
results, "closed-loop control". A natural assumption 
when the extent, but not the nature, of management 
action is varied according to its results, but with 
some delay, is that the value xm,k applied from time 
k is determined by adjusting xm,k–1 by some amount 
depending on the observed population value xp,k–1 

or a more readily measured water-quality variable. 
In other words, such a policy is described by a state 
equation in xm.

The loop is described by difference equations 
(the state equations) as a consequence of the time 

delays around the loop. [In practice dynamics, and 
hence delays, arise in three relations: in taking 
action in response to change in population, in that 
action affecting available P, and in available P influ-
encing population. A judgement has to be made, as 
above, how much of the dynamics to model as such, 
and how much to treat as instantaneous]. 

With successive values of the state variables 
occupying separate nodes, there is no difficulty in 
updating on receipt of new information. This is in 
contrast to a static BN, which does not distinguish 
time-separated values of the same variable and is 
thus floored by a loop.

This discussion of what variables are needed 
to handle the dynamics has appealed to the ideas 
of state and state equations as defined in Section 
2.2. However, the variables are described by their 
discrete probability distributions and the relations 
between them by CPTs. HMMs employ exactly the 
same ideas but go further towards state-variable 
modelling by standardisng the model structure in a 
way very reminiscent of state-variable modelling.
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3.4 HMM for cyanobacterial blooms
The structure of the state-transition npart of the 
HMM model for cyanobacterial blooms is shown in 
Figure 4, where the notation and assumptions are as 
in Section 3.3. The variables that define the state of 
the HMM have been chosen to be the same as those 
in the BN model, to maintain physical interpretabil-
ity and allow comparison. The state vector at sample 
instant k is thus

 
 [ ]Tkmkaktktkrkpk xxxxxx ,,,2,1,,≡x

 (9)
There are a few oddities in Figure 4. First, there 

is an instantaneous relation between two state vari-
ables, retention time xr and population xp. This does 
not conform with the Markov assumption that state 
at discrete time k depends only on state k-1 and 
forcing in interval k. State equation (6) can be rewrit-
ten to include the influence of xr,k on the right-hand 
side by using (8), the state equation for xr, to elimi-
nate xr,k, leaving a more complicated state equation 
for xp,k together with (8). That legalises the model 
and confirms that the choice of state variables was 
all right. 

However, in deciding in Section 3.1.2 whether 
to put in an intermediate combined “P and light” 
variable, it became clear that making the “fan in” to 
each child variable small was crucial, to minimise 
the number of CPT elements. This suggests that 
an instantaneous relation between xr,k and xp,k plus 
a relatively simple state equation for xp,k, account-
ing for the influence of xr,k–1 via xr,k, is preferable to 
a more complicated state equation for xp,k with xr,k–1 
appearing explicitly. That is, it may be worth modify-
ing the standard HMM state-transition structure by 
adjoining any instantaneous relations between state 
variables, wherever that reduces the total number of 
conditional probabilities to be supplied.

The same comments apply to the instantaneous 
link from xt1 to xa  in Figure 4.

A second feature of Figure 4 which demands 
thought is the presence of an intermediate variable 
zl,k–1 (light) between xt2,k–1 (turbidity), uf,k–1 (flow) and 
xp,k. As zl,k–1 is instantaneously related to xt2,k–1 and 
uf,k–1, it is not a state variable and could be elimi-
nated. It should, however, be retained as an 
argument of the state equation for xp,k, both for phys-
ical interpretability and for the same reason as the 
“P and light” variable in Section 3.1.2 and xr,k in the 

previous paragraph: to minimise the total number of 
CPT elements.

The third oddity in Figure 4 is the presence of 
uf at more than one sample instant in the forcing of 
xr. This is not illegal, as no assumptions are made 
in HMM modelling about the time structure or inde-
pendence of known forcing variables. The question 
does arise, though, whether multiple appearance of 
the same physical variable is economical. Assuming 
that the structure of the model of the dynamics 
between uf and xr cannot be simplified as was done 
for turbidity in Section 3.1.2, all the sample-instant 
values of uf have to appear. Either (i) they are all 
regarded as elements of a forcing vector, the value 
of which is renewed at each sample instant, subject 
to the constraint that a value which appeared earlier 
as one element stays the same when it reappears 
as another, or (ii) the earliest sample is specified as 
scalar forcing and the later ones are generated as 
pseudo-state variables related to it by state equa-
tions which merely successively move the variable 
one sample interval forward in time and do not 
require CPTs. There is no difference in computing 
load but the latter is tidier.

The lessons from these anomalies with respect to 
the usual model structure are that:

  they can be removed, and the whole model put 
into standard HMM form, by eliminating inter-
mediate variables and being flexible in defining 
state variables

  such tidying-up is a bad thing if it removes physi-
cally interpretable variables and/or produces 
more elaborate relations and thence larger “fan 
in” and more CPT elements.
The observation part of the HMM is simple. The 

observed symbols are the quantised and imprecise 
values of cyanobacteria population. Population is a 
state variable, so the observation process might be 
modelled without an observation probability matrix 
as: yk = xp,k (10)

To do this, any uncertainty in the measurement 
process must be included as additional spread of 
the probability distributions conveyed by the CPTs 
for xp,k. If, on the other hand, the consequences of 
better or worse monitoring are of interest, the qual-
ity of monitoring can be specified by a separate 
observation probability matrix.
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Introduction 
A list of steps in constructing BN models of systems 
with dynamics and/or feedback will be given, with 
details of the thinking behind each step. The list is 
not claimed to be exhaustive or to prescribe the 
“best” way to go about the modelling. The advice 
it offers must be interpreted according to the pur-
poses and limitations of the modelling. Its aim is 
to help in systematically constructing a model 
which does not oversimplify yet is no more compli-
cated than necessary. Provision of data, elicitation 
of knowledge and calibration are considered only 
briefly. Model-structure features affecting complex-
ity and data needs are discussed, however. This 
section concentrates on aspects which require more 
thought than might be obvious at first, and on factors 
which only arise when dynamics and feedback have 
to be modelled. 

To help in seeing how to model dynamics eco-
nomically, some of the ideas underlying two model 
types outlined in earlier section of this report, state-
space models (SSMs) [11] and Hidden Markov 
Models (HMMs) [16,18], are used. Both sorts of 
model are simple in general structure and can rep-
resent a wide range of system behaviour. Previous 
acquaintance with such models isn’t necessary to 
read this section.

Steps in model construction
Each major step in model construction is described 
below. Details appear in square brackets and exam-
ples in italics; they aren’t essential to the sense.

It’s worth stressing that constructing a model 
isn’t really a linear procedure, going once through 
a sequence of steps. Often an earlier step will have 
to be revisited as the draft model proves too elab-
orate or too coarse, or as new information comes 
to hand from discussions, field tests or literature 
search. Sensitivity analysis [27] may help in assess-
ing whether the model has become over-elaborate 
but is too large a topic to cover here. Reference [28] 
takes a less specialised look at the steps in develop-
ing a mathematical model of a dynamical system.

1. Choose the physical variables

This may require quite a bit of thought and 
judgement.

First, the limits of the model have to be set. Of 
the processes believed to occur in the system being 
modelled, we 

  decide to leave out those which don’t look 
important for the intended use of the model, 

  exclude others by treating their outputs as model 

4. Construction of BNs with dynamics and feedback

inputs, with definite values specified by a sce-
nario or with a range of possible values, and 

  regard others still as contributing to the uncer-
tainty in model variables without modelling them 
explicitly.

Example

Imagine we are developing a BN model to predict 
stream-flow (an example we’ll use many times). 
Stream-flow depends on rainfall in the catchment, 
evapo-transpiration, interception by vegetation and 
antecedent soil moisture. We may decide to 
(i) regard potential evapo-transpiration as a known 

(perhaps uncertain) input, rather than modelling 
how it relates to temperature, wind speed and 
humidity, and 

(ii) omit interception, because we know too little to 
estimate it, while admitting that leaving it out adds 
to uncertainty in the effective rainfall. 

Second, we must decide on the degree of detail. 
We can model every stage in a cause-effect chain 
individually or lump them together, omitting the 
intermediate variables. Similarly, when a cause 
affects a variable by more than one route, we may 
choose to combine the parallel cause-effect links, 
again leaving out intermediate variables. Although 
such combining simplifies the model, it loses vari-
ables which might be useful for checking the 
credibility of the model or even calibrating it, so a 
compromise will often have to be made. Moreover, 
insight into the processes determining intermedi-
ate variables may help in selecting model structure, 
even when those variables do not appear explicitly.

Example

We can either model soil moisture explicitly or com-
bine the sub-model predicting it with the sub-model 
relating it to stream-flow, yielding a single model in 
which soil moisture does not appear. As measure-
ments of soil moisture are rarely available, omitting it 
seems sensible. On the other hand, if we don’t con-
sider it at all, we throw away any knowledge of what 
determines soil moisture, which might have sug-
gested part of the model structure. The rate of change 
of soil moisture varies (up to saturation or complete 
dryness) through deficit or excess in a water bal-
ance, suggesting at least a first-order dynamical 
relation between the model inputs and soil moisture. 
[See items 2 and 4 for discussions of dynamics and 
model order]. Whether these dynamics need mod-
elling depends on factors such as the time scale of 
model operation and whether the catchment is satu-
rated for much of the time. In addition, the processes 
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generating stream-flow include quick flow such as 
overland flow, and much slower flow through infiltra-
tion. We would therefore expect two (or conceivably 
more) routes for flow, operating in parallel, which we 
can choose either to model separately or to com-
bine. Often combining them will make sense, as we 
cannot measure either component of flow and have 
little prior knowledge of their relative sizes. That said, 
knowing that there are two flow components sug-
gests that a second-order sub-model is appropriate 
for the dynamical response of stream-flow to effective 
rainfall. 

2. Decide which parts of the model are 
static and which dynamical

What distinguishes a dynamical from a static model 
or sub-model is that the effects of a change in a vari-
able are time-spread, not instantaneous changes 
to new values. Conversely, dynamics imply that the 
value of an affected variable at any instant depend 
on the previous history of the variables influencing 
it dynamically, not merely on their present val-
ues. Plainly a dynamical BN has to include values 
of some variables over some period of time. SSMs 
and HMMs suggest how to handle dynamics in BNs, 
through ideas covered in item 3 and later. Their 
structures are motivated largely by the wish to deal 
with time-spread effects as simply as possible, mini-
mising the amount of history that has to appear in 
the model.

We aim to model no more than necessary as 
dynamical. Several practical questions concern 
what has to be modelled in that way:
(i) Can we afford to aggregate inputs and outputs 

over a period long enough for the dynamics not 
to show? 
Example
If we are interested in water availability over a a 
period of some months, the dynamics describing 
how each day’s rainfall affects the next few days’ 
stream-flow can probably be ignored. All that 
matters is the model’s mean stream-flow per unit 
rainfall over the period (influenced by initial soil 
moisture and mean evapo-transpiration as other 
inputs). On the other hand, if we want to predict 
daily stream-flow, we cannot ignore the dynamics.

(ii) Is the time scale of interest short enough for 
some of the variables subject to dynamics to be 
treated as constant in each period?
Example
In modelling the response of a small catchment to 
a short rain event, we can ignore the dynamics of 
seasonal variation in interception. We may also be 
able to treat evapo-transpiration rate as constant. If 
the flow peak is the main interest, we may be able 
to omit the dynamics of the slow flow component.

(iii) Are steady-state modelled outcomes, for 
instance of an NRM action, much more impor-
tant than the transients on the way to them? If so, 
the dynamics can be ignored.
Example
Change in water yield resulting from revegeta-
tion. Depending on the nature of the vegetation 
and the time scale of interest, the long-term 
dynamics of growth, and hence transpiration, may 
have to be modelled even though the rainfall-
runoff dynamics need not. This leads to a more 
refined question:

(iv) Are some of the cause-effect relations so much 
quicker than the rest that they can be treated as 
instantaneous? The answer is very often yes in 
environmental systems.

All these questions amount to asking which of the 
dynamics dominate (if any do) on the time scale of 
interest; only those dynamics need be modelled.

3. Identify the role of each variable

The roles are as input, output, state or inter-
mediate variables. Each has a specific, defined 
meaning, so to avoid confusion the words can’t 
be used casually in other senses. One of the most 
important features of HMMs and SSMs is that they 
clearly distinguish input, output and state variables. 
[They don’t use intermediate variables]. 

Inputs are forcing variables, through which the 
outside world influences the rest of the model. They 
come in two sorts: those which can be assigned val-
ues and those which cannot. The latter have to be 
treated, as already mentioned, as just contributing to 
the uncertainty in the variables they affect, and do 
not appear explicitly in the model. Each quantifiable 
input appears either with a certain value, measured 
or specified, or with uncertainty described by the 
probabilities of taking each of a range of possible 
values. 

Outputs are the variables which the model is 
intended to predict and which will be scrutinised. 
They need not be physically outputs of the system.

Example

Stream-flow at various points in a stream network may 
be of interest, not only the farthest downstream. Less 
obviously, the modelled soil moisture or groundwa-
ter exchanges may be model outputs although they 
are inputs to the remainder of the model determining 
stream-flow.

The other significant thing about an output is 
whether it can be measured (accurately or not), i.e. 
whether it provides information which can be pro-
cessed by Bayes’ rule to improve knowledge of the 
variables affecting it and/or affected by it.

The role of state variables is to model 
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dynamics. The idea of state arises in SSMs and 
HMMs. SSMs and HMMs employ the Markov 
assumption that there exists a collection of variables, 
the state variables jointly making up the state vector 
(or simply “state”), with the nice property that their 
future behaviour is completely fixed by their pres-
ent values and the future behaviour of the inputs. In 
other words, it isn’t necessary to keep in the model 
any history of any variables, because the pres-
ent state forms a full set of initial conditions for the 
future. It’s quite surprising that this is possible for a 
system with a time-spread response to input values 
at any given instant, so here’s a simple example.

Example

A system has dynamics and its variables are sampled 
at time intervals of 1, starting at time 0 and taking all 
earlier values as zero (i.e. ignoring them). Its immedi-
ate future output yk+1 at time k+1 is related to the time 
series u0,  u1,  u2,  ..., uk  of its input u by:
yk+1=0.5uk+0.4uk–1+0.32uk–2+...0.5(0.8)ruk–r+...0.5(0.8)ku0,k≥0.

[Thus the influence of each previous input value dies 
away by 20% over one time interval]. It looks as if you 
have to use the entire history of the input to find the 
output at time k. On the contrary, exactly the same 
behaviour results if we rewrite the model as the state 
equation:
yk+1=0.8yk+0.5uk,k ≥0 with y0=0.

Here y is a state variable (the only one needed in 
this instance), and yk contains all essential informa-
tion about the influence of u0,  u1,  u2,  ..., uk-1 on yk+1 
and, through it, all later values of y.

Note

The state variables are as defined above, not all 
the variables, an arbitrarily chosen collection of 
interesting variables or the variables thought to be 
important, as often found in common usage of the 
words.

The significance of the state-variable idea for 
BNs is that, as in this little example, dynamics can 
be represented by a state equation with state now 
and inputs now as the only variables on the right-
hand side (causes) and state at the end of the next 
time interval on the left (effect). We use it to step for-
ward in intervals, feeding in the input values as we 
go. At any time the BN need only include variables 
at two instants (the current state and input and the 
next state), not a whole history.

It’s important to remember that the use of state 
variables relies on the Markov assumption, which 

is not universally valid. For instance, if an effect y(t) 
is related to cause u(t) and y(t-T), in other words 
there is a delayed feedback, future y depends on 
the past behaviour of y over the whole interval of the 
delay. If there were no restrictions on y, that would 
entail knowing an infinite number of values of y in 
the interval. In practice, it is enough to know a finite, 
perhaps small, number of values. However, extra 
state variables have to be introduced to embody 
this information; this is discussed further in step 7.

When the pure delay T occurs at the input or 
output, rather than within a feedback loop, we need 
only replace u(t) by u(t-T) or y(t) by y(t+T) in their 
relations with state at time t. The only complication 
arises when T depends on another variable, often as 
a transport delay varying with a flow rate. In these 
cases, T will itself be a variable.

Both SSMs and HMMs consist of state equa-
tions and observation equations linking state to 
outputs. The observation equations are static (non-
dynamical) and raise no new issues in a BN.

Intermediate variables are all those which 
aren’t inputs, outputs or state variables. They aren’t 
essential parts of the model, in the sense that the 
model can relate the inputs via the state variables 
to the outputs without including them explicitly. They 
don’t appear in SSMs or HMMs. Nevertheless, we 
may include them because they are physical vari-
ables which help to interpret the model or because 
their presence reduces fan-in (the number of vari-
ables directly affecting a given variable) and hence 
the complexity of the relations in the model.

Example

Fig. 5(a) shows relations between four causes, each 
with C possible values, and a single effect with E pos-
sible values. The probabilities of the values of the 
effect variable are given by those of the cause vari-
ables passed through a CPT with EC4 entries. Figure 
5(b) shows the same relation in more detail, with two 
intermediate variables capable of taking any of I val-
ues. Now we need two CPTs each with IC2 entries 
plkus one with EI2 entries. Usually 2IC2 + EI2 << EC4, 
so introducing the intermediate variables reduces 
the overall complexity of the CPTs greatly. For exam-
ple, with C = E = I = 5, 2IC2 + EI2 = 375 and EC4 = 
3125. For C = 3, E = 2 and I = 3, 2IC2 + EI2 = 72 and 
EC4  = 162. However, note that for C = 2, E = 3 and 
I = 5, a very unfavourable case for including the inter-
mediate variables (but perhaps not very likely in that 
I < E), 2IC2 + EI2 = 115 and EC4 = 48. 
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Figure 5. Introduction of intermediate variables
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4. Add any extra state variables 
necessitated by dynamics

As illustrated by the state-equation example above, 
a single state variable may suffice for simple 
dynamics linking a single input to a single affected 
variable. However, in many cases the modelled 
dynamics are more complicated.

Example

If both quick and slow components of flow response 
to effective rainfall have to be considered in a 
rainfall-runoff model, the underlying relation is a 
second-order differential equation giving the sec-
ond derivative of stream-flow in terms of its present 
value, its first derivative and the effective rainfall. Such 
an equation can be rewritten as a pair of first-order 
equations: ),,( uzzgz    can be rewritten as:
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[In practice, a discrete-time version with a sampling 
interval of an hour or a day is used].

Dynamics described by an nth-order differential 
equation can be written as n first-order differential 
equations and require n state variables. Overall, 
the number of state variables required in a model 
is the total number of initial conditions that must be 
given to allow the differential equations describing 
the dynamics to be solved (in theory; in practice in 
a BN, they are replaced by first-order, discrete-time, 
probabilistic relations as outlined in steps 8 to 12). 
Some will be physical variables, while others, as 
in this example, will be their derivatives or related 
to them. The uncertainties motivating use of a BN 
model may make it hard to estimate the orders of 
the dynamical relations. In deciding how many and 
which state variables to incorporate; trial and error 
may be needed, assessing the credibility of BN 
outputs and comparing them with measurements 
where possible.

It’s sometimes handy to know that we have con-
siderable freedom of choice in what variables to use 
as the state. Roughly speaking, if a particular collec-
tion of n variables is valid as state, so is any set of n 
functions of those variables from which the original 

variables can be found uniquely. This freedom often 
allows the relations between the state variables 
in the state equations to be simplified, but almost 
always at the cost of greater complexity in the input-
to-state and state-to-output relations. For example, 
the state equations can generally be rearranged 
into decoupled form, where the future of each state 
variable depends on the current value of that vari-
able alone among the state variables, but also on 
more complicated combinations of input variables. 
Although there may be instances where an oppor-
tunity for decoupling in a BN can be noticed ad hoc, 
it can only be carried out systematically if the coef-
ficients in the state equations are all known exactly, 
which is not so in BNs.

5. Decide whether the model is continuous-
time or discrete-time

In BN models, each set of causes and their effect are 
related through a conditional probability table with 
an entry for each possible combination of discrete 
values of cause and effect. This is easily extended to 
handle cause at one time and effect at another, and 
can thus deal with dynamics in principle.  However, 
many if not all of the relations modelled are in reality 
a collection of rate relations for continuous-valued, 
continuous-time variables (corresponding to differ-
ential state equations), instantaneous state-to-output 
relations (corresponding to algebraic observation 
equations) and instantaneous relations for any inter-
mediate variables. In practice, computation of the 
model output has to use values of the input, state and 
intermediate variables at particular instants, usually 
regularly spaced (by a fixed sampling interval), and 
any measurements will also be regularly spaced 
in time. We can turn a continuous-time, differential- 
and algebraic-equation model into a discrete-time 
model by integrating the differential equations over 
one sampling interval, giving the state vector at the 
end of the interval in terms of the forcing during the 
interval and the state at its start. 
[If we denote the state at instant k by column vector:

 Tknk xxx ...21x ,

the forcing by:

 Tkmk uuu ...21u
and the sampling interval by t, we integrate the con-
tinuous-time model:

),( uxgx   
to get a relation of the form:
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Even if the model were to be kept as continu-
ous-time, integrating its differential equations would 
almost always (except when analytical solution is 
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possible) involve computation over a succession 
of finite time intervals, so in practice the model is 
discrete-time regardless. We shall therefore always 
take the model to be discrete-time, knowing that 
most of the variables are actually continuous-time.

6. Choose time and spatial scales and 
sampling intervals

The time scales of the model have already had to be 
considered in deciding what dynamics to include 
but that’s not the end of the story. We also need to 
ask what information can be provided to the model 
and what information is to be obtained from it, and 
ensure that they are consistent with the time inter-
vals chosen. 

Too-coarse sampling in time can result in severe 
loss of information. [This is intuitively obvious but 
it’s worth looking into just how this happens so as to 
see what it implies for choice of sampling interval 
(time step) in the model. Consider a time-varying 
quantity (“signal”) whose frequency content does 
not change with time (an idealisation to allow easy 
analysis) and extends only up to a frequency f 
cycles per unit time. Roughly speaking this means 
that the shortest significant feature comes and goes 
in not less than ½f  time units. If the signal is sampled 
at time intervals of , the spectrum of the sampled 
signal consists of repeats of the 2-sided spectrum 
of the original, continuous-time signal, spaced 
in frequency by 1/ cycles per unit time [11]. The 
spectrum of the original, unsampled signal is recov-
erable from that of the sampled signal by low-pass 
filtering so long as the spectrum replicas do not 
overlap, i.e. provided < ½f. That is, sampling loses 
no information (surprisingly) if the sampling inter-
val is less than half a cycle at the highest frequency 
present. This assumes distortionless, instantaneous 
sampling and perfect low-pass filtering of the 
sampled signal, both normally reasonable approx-
imations. More importantly, it also assumes that (i) 
the information-bearing signal cuts off sharply at 
frequency f, and (ii) there is no noise present at fre-
quencies above f. If (i) is not true, overlapping of the 
spectrum replicas at frequencies below f (called 
aliasing) superimposes information at higher fre-
quencies than f on the information at frequencies 
below f, making it impossible to unscramble the 
two. If (ii) is not true, higher-frequency noise compo-
nents add to those below frequency f, worsening the 
signal-to-noise ratio].

We conclude that at a given size  for the mod-
el’s time step, we can only get information about 
the components of the sampled quantity up to fre-
quency 1/2, and then only with any information 
and noise at frequencies above 1/2 superimposed 
(aliased) onto it. To put it in less technical terms, 

when we sample, not only do we lose whatever hap-
pens between samples, but also we do not know 
how much of the sampled values results from rapid 
and how much from slower variations, and are thus 
prone to misinterpret any variation we see. This 
rather subtle point is often overlooked yet is critical 
to making sense of variables viewed only at inter-
vals in time.

Moreover, aliasing prevents us from learning 
much about the characteristics of the noise pres-
ent (measurement errors, effects of unmodelled 
inputs, ignored effects of modelled inputs, and 
error resulting from representing distributed and/
or time-varying variables by spatial and/or tempo-
ral averages). All we can do is minimise aliasing by 
employing as short a sampling interval as possible. 
As the proportion of information and, to a lesser 
extent, noise tends to fall with increasing frequency, 
these ill effects are reduced at an increasing rate if 
the sampling interval is reduced. 

Reducing the sampling interval introduces 
another potential problem, of misinterpreting 
short-term variation due largely to noise as part of 
a significant trend (as happens all the time in eco-
nomics and weather forecasting). The problem is 
amenable to low-pass filtering to extract the slow 
components of interest. In a BN, the signal is what-
ever measure of central tendency or spread you 
choose to summarise the probability distribution of 
the variable. 

7. Account for any pure delays, adding 
variables as needed

For pure delays at input or output, see the last para-
graph of the discussion of state variables in step 
3. When the delay T applies to a state variable in 
the state equation, we must account for the earlier 
behaviour of state in an interval T long, as discussed 
in the next-to-last paragraph about state variables in 
step 3. With the model discrete-time, this is easy so 
long as T can be approximated by an integer num-
ber d of sampling intervals. All that’s necessary is to 
coin d-1 extra state variables, consisting of the origi-
nal state variable successively delayed by 1, 2,..., d 
sampling intervals.

Example

The evolution of a state variable x affected by a feed-
back loop with a total delay of 3 units  is described 
approximately (but well enough) by the discrete-
time equation xk+1=0.8xk–0.6xk–3 + 2uk, where u 
is a forcing input. Clearly the delayed-state term
–0.6xk–3 can’t be ignored, as it’s comparable with 
0.8xk. To include it in state equations relating quantities 
at time k and k+1 only, we define a new set of variables 

3,42,31,2,1 ,,,   kkkkkkkk xzxzxzxz , 
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giving:

which looks a bit peculiar but is indeed in the form 
(state at time k+1) = fn(state at time k and forcing at 
time k), as required, with the revised state vector:

 Tkkkkk zzzz ,4,3,2,1x .

8. Identify input-state, state-state and state-
output actions, and any cause-effect links 
free of uncertainty

Steps 1 to 3 chose input, state, output and interme-
diate variables, and later stages may have added 
more state variables. That done, we can employ 
prior scientific knowledge, field tests, analysis 
of records (not covered in this note) and “expert 
knowledge” (subjective estimation with unknown 
reliability) to improve our initial ideas on what rela-
tions are significant enough to be included in the 
model. 

At this stage it’s worth checking whether any of 
the relations have small enough uncertainty to be 
treated as certain, i.e. unique numerical relations 
of known algebraic form. Where the relation is one-
to-one, it needs no conditional probability table 
(CPT), of course. In fact, either of the variables can 
be eliminated, remembering to modify accordingly 
the argument of the probabilities in the upstream 
or downstream CPT of the other. If the certain rela-
tion is part of a many-causes-to-one-effect relation, 
it merely modifies the CPT for the rest of the causes 
and effect. 

9. Look for decoupling and weak influences 
to simplify state equations 

Some of the largest CPTs are likely to be those for 
the relations described by the state equations. There 
is thus a high premium on keeping those CPTs as 
small as possible. Their size is fixed by the number 
of arguments (cause and effect variables) and the 
number of discrete possible values of each.

Example

If state variable x has 3 possible values, with proba-
bilities of xk+1 conditioned on the 3 possible values of 
xk, 3 possible values of input u, the 2 of input v and 
the 2 of input w , the CPT for p(xk+1| xk,vk,wk ) has 
3 x 36 = 108 entries.

An HMM is the extreme case of simple structure, 
achieved by treating the whole collection of state 

variables as one big state variable. The number of 
possible state values is the product of the numbers 
of its constituent variables, usually a large number. 
[This treatment of state is understandable, as HMMs 
developed mainly in signal processing, where the 
state consists of the values of a short string of sym-
bols, successive samples of a single digital signal 
with a finite (and often small) alphabet. The problem 
is often to decide which were the transmitted val-
ues, having received them distorted and affected by 
noise].

Example

State variables x1 , x2 , x3 have 3 possible values each. 
They are influenced to varying degrees by the inputs 
u, v and w as above. Consider three cases:
(i) There is no interaction among the state variables, 

so their state equations are decoupled and give 
rise to three CPTs each with 108 entries, a total of 
324 entries.

(ii) There is full interaction, so each state variable 
is affected by all three state variable, and there-
fore has a CPT with 3 (33 x 12) = 27 x 108 = 2916  
entries, so in all there are 8748 entries . We hope 
that many of them will be small enough to call 
zero.

(iii) The state variables are combined to form one 
variable with 33 = 27 possible values. A single 
CPT now describes the state equation, and has 
27(27 x 12) = 8748 entries, the same total as in 
(ii). [A little thought shows that this is generally 
true, as exactly the same range of situations is 
allowed for].

The example shows that it does not matter 
whether we treat the state as a collection of sepa-
rate variables or one composite variable. What is 
crucial in keeping the number of CPT entries to be 
supplied small, given the number of possible values 
of each variable, is minimising both the significant 
interaction between state variables and the number 
of inputs significantly influencing each state vari-
able. This is a matter of choosing the state variables 
wisely, guided by prior knowledge, and of recognis-
ing when influences are weak enough to be ignored 
(given that coarsely discretising the variables has 
already incurred approximation error).

Example

If in the previous example x1 is affected only by itself, 
x2, u and v; x2 is affected only by itself, x3 and v; and  
x3 is affected only by itself,  u and w, the CPTs have 
respectively 162, 54 and 54 entries, a total of 270. 
Here x3 is decoupled from x1 and x2. Four of the 9 pos-
sible input-to-state connections, and 4 of the possible 
8 state-to-another-state connections, are taken to be 
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negligible. Deleting 8 of the 18 possible cause-effect 
links has reduced the number of CPT entries by a fac-
tor of over 30.

We have already noted that in a BN model, 
uncertainty will usually prevent us from simplifying 
those equations by decoupling, but partially decou-
pled dynamics are common in environmental (and 
other) systems.

10. Check complexity of observation 
equations

Sometimes a state variable is also an output, in 
which case its observation equation is trivial and has 
no CPT. More generally, two or more state variables 
affect an output variable and the size of its CPT is 
the product of the numbers of possible values of the 
state variables and output; once the state variables 
have been chosen, there is no room for manoeuvre 
to reduce the size of the CPT. However, in choosing 
the state variables the effects on the complexity of 
the observation equations, as well as the state equa-
tions, must be taken into account.

When the model is to aid management deci-
sions, there may be scope for  reducing the number 
of output values to 2 (corresponding to “yes/no” in 
the decision or 3 (corresponding to “yes/don’t know 
so get more information/no”) by inserting the deci-
sion thresholds.

11. Decide how to treat feedback, adding 
further state variables if necessary

Recall from step 3 that to handle dynamics a BN 
has to include state variables at a minimum of two 
times, the present and the end of the next sampling 
interval. Also, the presence of delay in the relation 
between past and future state makes extra state 
variables necessary, delayed versions of the origi-
nal one (step 7). Separation in time of samples of 
the same variable, as between the state now and 
its next value in each state equation, is enough to 
make dealing with a feedback loop in a BN feasible. 
With successive values of the same variable repre-
sented as separate nodes, updating variables in a 
loop does not imply that “A affects B, which affects 
A, which affects B... so their interaction prevents us 
from updating them”.  With delay, say one sampling 
interval between Bk and Ak+1, Ak affects Bk, which 
affects Ak+1, and that’s the end of it until we advance 
the clock one sampling interval and do it all over 
again. [The BN is an acyclic directed graph for 
computation over any one sampling interval]. If the 
delay is greater than one sampling interval, we coin 
extra state variables as discussed in step 7, with the 
mechanism of stepping forward in time unchanged.

At this point you may well ask what happens if 

the delay is much smaller than one sampling inter-
val. The answer is that however small the delay, it is 
not zero and so the first instant at which the effect 
of something happening now can be registered by 
the model is the next sampling instant. The sepa-
ration in time between values of the same variable 
at the start and end of a circuit of a feedback loop 
referred to above therefore always happens. This is 
so whether or not the loop has dynamics apart from 
the delay. If a delay of one sampling interval around 
the loop is an unacceptable approximation, the trick 
is to use a sub-multiple of that interval for the part 
of the computation involving that loop, retaining the 
original interval for any input of external information 
(output observations or input changes) and the rest 
of the model. 

The only remaining question specific to model-
ling a feedback loop is where to put the necessary 
delay. Usually knowledge of the mechanisms being 
modelled, such as transport delay in a stream 
network, will decide this. If not, the location or dis-
tribution of the delay only matters if an intermediate 
variable in the loop interacts with another outside 
it. In such an instance it might be necessary to 
guess where the delay goes, see how the model 
results compare with known behaviour, and adjust 
the delay allocation by trial and error. The behav-
iour of the model will be sensitive to the location of 
the delay in such cases when the dynamics are sig-
nificant on a time scale comparable with the delay, 
unsurprisingly. [Control theory shows that a small 
change in a pure delay in a feedback loop may have 
a large effect on closed-loop response, even making 
the difference between stable behaviour and run-
away. Most environmental processes are inherently 
stable (or we shouldn’t be here) but there might be 
applications where delays have to be treated care-
fully, for instance by augmenting the model with 
intermediate variables which can be monitored and 
compared with expectations or measurements].

12. Choose the discrete possible values of 
the variables

In principle, a BN model can deal with an uncertain 
relation between a continuous-valued cause c and 
a continuous-valued effect e. [Given the probability 
density function p(c) and the conditional probability 
density function p(e|c), the joint probability density 
function p(c,e) is p(e|c)p(c) and p(e) is the integral 
of p(c,e) over all possible values of c. If an inference 
about c is to be made from updated knowledge of 
e, p(c|e) can be found from the prior p(c) by Bayes’ 
rule as p(e|c)p(c)/p(e)]. However, it is usually easier 
to employ discrete values for all variables, with asso-
ciated probabilities. Discretisation inevitably loses 
detail but simplifies the application of Bayes’ rule; 
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integration to get p(e) from p(e|c)p(c) becomes 
summation over the possible values of c, and in fact 
we need not find the values of p(e) explicitly, as the 
values of p(e|c)p(c) can be scaled to yield those of 
p(c|e) merely by summing them and divided by the 
sum to make the total probability 1. In practice, the 
computations have to be done for intervals in each 
of the variables unless (very unusually) the proba-
bility density functions are known in algebraic form 
and are analytically tractable, so we might as well 
regard the variables as all discrete-valued. 

The rule in selecting the discrete values for each 
variable is simply to use the smallest number that 
cover the range of interest and are not so widely 
spaced as to reduce the model’s accuracy (affected 
by the quantisation of the variables) and resolution 
to the point where its results are useless. This is, of 
course, a matter of both judgement and trial and 
error, constrained also in many cases by computing 
load and limited ability to provide data. A sensitivity 
analysis is essential if the reliability of the results is 
to be quantified and the main sources of uncertainty 
(doubt as well as imprecision) pointed out.

13. Specify the conditional probability 
tables

Unless there is a large body of observational evi-
dence, some or all of the conditional probabilities 
in the CPTs are subjective and represent beliefs, in 
line with Bayesian estimation but demanding scru-
pulous interpretation of the model results (as beliefs, 
not probabilities). The procedure for eliciting beliefs 
has, of course, to be viewed as provisional, subject 
to revision in the light of comparison of the model’s 
behaviour with other knowledge. It’s worth not-
ing that subjective beliefs may be highly unreliable 
when they concern extremes, because of lack of 
experience of rare events. Conclusions from a BN 
(or any other Bayesian, subjective) model about 
risks associated with extreme behaviour are corre-
spondingly unreliable. 

When there is observational evidence, in the 
form of records, some of the CPT entries may be 
found by a calibration algorithm based on optimi-
sation of the fit between model and observations. 
Details appear in the references in [2], which also 
contains a great deal of other illuminating mate-
rial on HMMs, SSMs, BNs and connections between 
them.
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Conventional state-variable modelling and fuzzy 
modelling have been rejected for dealing with 
dynamics and feedback in Landscape Logic cases 
where a static BN would otherwise be used. The 
reasons are listed at the ends of Sections 2.2 and 
2.3. That said, the ideas underlying state-variable 
modelling have been found helpful in thinking about 
DBN and HMM modelling for the algal-bloom exam-
ple. Specifically,

  exploiting the Markov assumption leads to eco-
nomical choice of variables in the dynamical 
parts of the model

  classification of variables as state, forcing or 
observed throws up intermediate physical vari-
ables which could be eliminated but whose 
inclusion may make the model more economi-
cal, as well as more fully interpretable

  partitioning the state into physically distinct seg-
ments helps in seeing the sparseness structure 
of the state-transition matrix, and thence the 
sizes of the CPTs. Naively squaring the number 
of possible states overestimates the number of 
state-transition matrix elements enormously.
DBNS and HMMs do the same job by essen-

tially the same means, and indeed Sections 3.3 
and 3.4 show that the considerations in developing 
either sort of model are largely identical: inclusion, 
omission and merging of variables, coarseness of 
quantisation, fan in and CPT size, interpretability 
and explanatory power versus economy. An HMM 
can be viewed as a standardised representation of 
a DBN, which deals with time-stepping economi-
cally and makes the role of each variable clear. The 
example has shown, however, that an algebraically 
less tidy model may have smaller data demands.

The treatment by HMMs of the state as one com-
posite variable makes sense when its components 
are all of the same physical type, as for instance in 
successive data symbols in digital communication 
or formants in speech modelling. In environmental 
modelling, by contrast, it is necessary and valuable 
to retain the separate identities of the variables com-
prising the state, to show how to keep the model 
structure economical as mentioned above and to 
avoid losing interpretability. An exception may be 

5. Conclusions

in modelling distributed systems, where it would 
be worth investigating the possibility of replacing a 
large number of spatially quantised variables repre-
senting a single distributed variable, e.g. a flow field, 
by a single “pattern” variable taking a fairly small 
number of possible values (perhaps accompa-
nied by an amplitude variable). Introducing spatial 
dependence otherwise looks infeasible except in 
the simplest cases.

Introduction of time as an independent vari-
able has been seen, in the example, to increase 
the number of conditional probabilities to be sup-
plied greatly. Much of the increase is inevitable, as 
the simplest description of discrete-time dynamics, 
a first-order difference equation, includes the previ-
ous sample of the response (state, child) variable 
as an extra parent, multiplying the size of the cor-
responding CPT by the number of possible values 
of that variable.

Feedback loops pose no problem in an HMM, 
so long as the total delay around the loop is at least 
comparable with one sample interval, as then the 
variables involved can be updated in the normal 
time-stepping process. A static BN can be used 
sequentially to track changes via steady states or 
responses at fixed, pre-specified times. However, its 
inability to handle feedback makes it unusable for 
updating the CPTs giving effects of management 
actions, unless the actions are taken as so infrequent 
as to open the loop over the response time; this 
excludes timely management.

It is worth reiterating the limitation of static BN 
modelling, that the model can only mimic average, 
steady-state or extreme behaviour of the system, as 
measured by the data used to calibrate the model. 
If the model is intended to predict or explain con-
ditions which depend on the dynamics of the 
responses, omission of the dynamics loses the pos-
sibility of gaining understanding of what happens, 
and makes it improbable that the model can dis-
criminate critical situations well enough to be useful.

One-sentence conclusion: the HMM framework 
and the ideas of state-variable modelling provide 
a good basis, but not a rigid recipe, for developing 
dynamical Bayesian Network models.
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